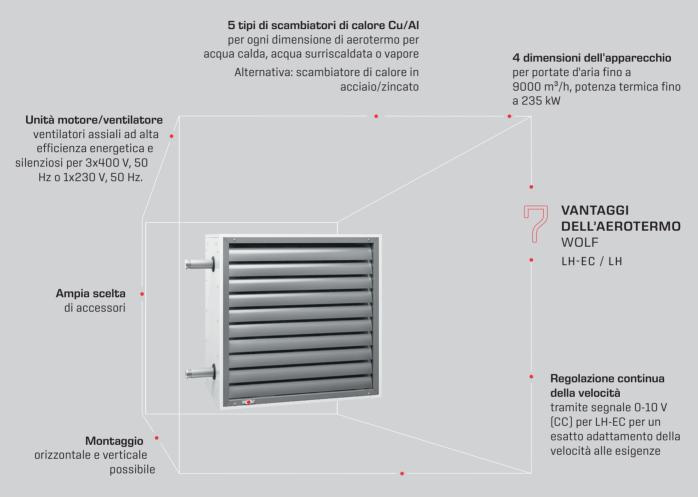

WOLF AEROTERMO

LH-EC / LH



AEROTERMO	DESCRIZIONE	LH-EC / LH	04
	APPARECCHIO BASE	LH-EC / LH	05-07
	APPARECCHIO BASE	LH-ATEX	08
DIMENSIONI		LH-EC / LH / LH-ATEX	09
TABELLE DATI TECI	NICI	LH-EC	10-13
TABELLE DATI TECI	VICI	LH	14-21
RESISTENZE DELL'	ACQUA	LH-EC / LH	22
SET DI INTERCETT ACCESSORI DI FISS			23-26
ACCESSORI PER L'	ESPULSIONE		27-29
SERRANDA DI INDI	JZIONE		30
ACCESSORI PER L'	ASPIRAZIONE		31-32
SISTEMA DI REGOLAZION	E		33-51
DISPOSITIVI DI CO PANORAMICA	MANDO E REGOLAZIONE		33-34
DISPOSITIVI DI CO	MANDO		35-38
ATTUATORI PER SE	RRANDE		39
DISPOSITIVI DI CO SERVOCOMANDI SE			40
TERMOSTATI, MOF	SETTIERE		41-42
SISTEMA DI REGOI	AZIONE WRS		43-48
INTERRUTTORE A	5 POSIZIONI PER 0 - 10 V		49
COLLEGAMENTO E AZIONAMENTI SPEC			50-51
AVVERTENZE PER LA PRO	OGETTAZIONE		52-63
LANCIO DIAGRAMM	I	LH-EC / LH	52-54
POTENZA IN FUNZIO	ONE DEGLI ACCESSORI	LH-EC 25-100	55
LIVELLO DI PRESS TABELLA VELOCITÀ	ONE SONORA,	LH	56-57
FABBISOGNO APPRO DI POTENZA TERMICA	OSSIMATIVO		58
DISTANZE DI MON	AGGIO	LH	59-60
ESEMPI DI MONTAC	GIO	LH	62
PESI		LH	63
VENTILATORE A SOFFITT	0	LD 15	60

AEROTERMO LH-EC / LH DESCRIZIONE

LH-EC

variante ad elevata efficienza energetica dotata di ventilatore EC a corrente continua con inverter incorporato, funzionamento estremamente silenzioso

UNITÀ VENTILATORE EC MODULANTE (1 x 230 V, 50 Hz)

Le unità ventilatore impiegate nell'aerotermo LH-EC con motori EC garantiscono, rispetto alla versione standard, un funzionamento particolarmente efficiente e silenzioso in presenza di portate d'aria elevate.

La regolazione continua della velocità viene effettuata tramite segnale 0-10 V (CC) ed è possibile gestirla con il modulo di regolazione LM2 o, in alternativa, con un regolatore di velocità a regolazione continua. In questo modo il numero di giri può essere sempre adattato con precisione alle esigenze, con rendimento del motore elevato sull'intero campo di regolazione grazie alla tecnologia EC.

Grado di protezione IP54, classe di isolamento B, protezione avvolgimenti mediante controllo di temperatura integrato. Tabella dati tecnici pagina "Aerotermo LH-EC 25" a pagina 10-13.

AEROTERMO LHAPPARECCHIO BASE

VERSIONE STANDARD

Motore trifase 3 x 400 V, 50 Hz, collegamento a stella: bassa velocità, collegamento a triangolo: alta velocità

Grado di protezione IP 54, classe di isolamento F, cuscinetto a sfere con grasso speciale per temperature da -25 a + 140 $^{\circ}\mathrm{C}$

per qualunque posizione di montaggio, esente da manutenzione

Protezione degli avvolgimenti tramite termocontatti incorporati che interrompono il circuito di corrente di comando nell'interruttore multiplo o apparecchio di comando in caso di surriscaldamento del motore e quindi spengono il motore.

In caso di abbassamento della temperatura degli avvolgimenti, il motore riparte automaticamente.

La protezione degli avvolgimenti è attiva solo congiuntamente a un interruttore multiplo o apparecchio di comando.

Per il collegamento vedere pag. 34 - 38.

In caso d'impiego di interruttori o di regolatori di velocità non originali, la garanzia per il motore decade!

Per la potenza del motore vedere tabella dati tecnici a pagina 14-21.

AZIONAMENTI SPECIALI

Ventilatore monofase 1x230 V, 50 Hz, solo alta velocità, bassa velocità con interruttore a 5 posizioni.

LH		25	40	63	100
Potenza el. assorbita max.	(kW)	0,17	0,28	0,39	-
Corrente assorbita max.	(A)	0,73	1,25	1,78	-

Grado di protezione IP 54, classe di isolamento F, protezione avvolgimenti come per la versione standard oppure tramite termocontatti collegati in serie con l'avvolgimento del motore sul posto.

In caso di abbassamento della temperatura degli avvolgimenti, il motore riparte automaticamente.

Per il collegamento vedere pag. 36.

AEROTERMO LH-EC / LH APPARECCHIO BASE

STRUTTURA

Struttura con telaio in profilati angolari di acciaio saldati e zincati. Mantello in lamiera di acciaio zincata. Parete posteriore realizzata con ugello di entrata imbutito. Serranda di espulsione con alette deflettrici regolabili singolarmente.

VENTILATORE

Unità a ventilatore assiale costituite da girante, motore a rotore esterno e griglia di protezione. Ventilatori silenziosi ed esenti da manutenzione, adatti a qualunque posizione di montaggio.

Temperatura ambiente max.: da -20 °C a +40 °C

SCAMBIATORE DI CALORE

Scambiatore di calore Cu/Al

5 tipi di scambiatori di calore per ogni tipo di aerotermo per acqua calda (PWW), acqua surriscaldata (PHW) o **vapore** (D)

Scambiatore di calore in Cu/Al, collettore in acciaio, estraibili lateralmente Telaio in lamiera di acciaio zincato Attacchi filettati per versioni PWW e PHW Flangia e controflangia per versione D

Nota importante:

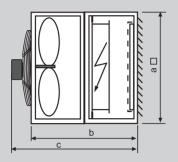
Per poter trasferire la potenza calorifica, gli scambiatori di calore devono essere collegati in esercizio in controcorrente.

Versioni PWW e PHW: raccordo filettato per PN 16 fino a 140 °C

Mandata acqua sul lato di uscita dell'aria in alto/in basso
Ritorno acqua sul lato di ingresso dell'aria in alto/in basso
Lato di raccordo in direzione dell'aria destra/sinistra
Dimensioni di allacciamento: vedere tabella dati tecnici

Versione D: con flangia e controflangia fino a 9 bar di vapore saturo Attacco vapore in alto Ritorno condensa in basso Lato di raccordo in direzione dell'aria solo a sinistra Dimensioni di allacciamento: vedere tabella dati tecnici

ALTERNATIVA:


SCAMBIATORE DI CALORE IN ACCIAIO ZINCATO

Scambiatore di calore e collettore in acciaio zincato, estraibili lateralmente adatto per acqua calda (PWW), **acqua surriscaldata** (PHW) o **vapore** (D) Telaio in lamiera di acciaio zincato Attacchi con flangia e controflangia Attacchi con filettatura in pollici per versioni PWW e PHW Flangia e controflangia per versione D

MISURE DI PROTEZIONE:

Negli apparecchi LH-EC è necessario assicurarsi che quando il ventilatore è fermo, l'alimentazione del fluido di riscaldamento allo scambiatore di calore venga interrotta per evitare danni da surriscaldamento all'elettronica del motore.

BATTERIA ELETTRICA DI RISCALDAMENTO INCLUSO LIMITATORE DI TEMPERATURA DI SICUREZZA

Dimensioni

LH	25	40	63	100
а	500	630	800	1000
b	600	600	600	680
С	710	715	720	810

Livelli di potenza termica:

LH	25	40	63	100			
а	12 kW	20 kW	25 kW	35 kW			
h	Potenze manoiori su richiesta						

Collegamento:

12 kW:	a 4 posizioni	1/4, 2/4, 3/4, 4/4	
20 kW:	a 4 posizioni	1/4, 2/4, 3/4, 4/4	
25 kW:	a 5 posizioni	1/5, 2/5, 3/5, 4/5, 5/5	
35 kW:	a 5 posizioni	1/5, 2/5, 3/5, 4/5, 5/5	

Per evitare surriscaldamenti osservare le seguenti portate d'aria minime:

LH		25	40	63	100
LR orizzontale	v min (m³/h)	800	1600	2500	4000
LR verticale	Vmin (m³/h)	1000	2200	3200	5000

MISURE DI PROTEZIONE:

In ogni caso occorre garantire che, in caso riduzione della portata dell'aria al di sotto del quantitativo minimo di aria, la batteria elettrica di riscaldamento venga spenta. Inoltre la batteria elettrica di riscaldamento può essere attivata solo da uno o più contattori il cui circuito di corrente di comando passa da un dispositivo di controllo surriscaldamento collegato in serie.

AEROTERMO LH-ATEX

APPARECCHIO BASE

STRUTTURA

UNITÀ VENTILATORE-MOTORE

SCAMBIATORE DI CALORE

ACCESSORI

Versione antideflagrante per la zona a rischio di esplosione 2 II 3G c IIB T4 X

Per montaggio a parete o a soffitto, per esercizio con aria esterna, aria di ricircolo o aria miscelata, per riscaldamento e/o ventilazione

Struttura del telaio realizzata con profilati angolari in acciaio saldati e zincati

Rivestimento in lamiera di acciaio zincata

Parete posteriore realizzata con ugello di aspirazione imbutito

Serranda di espulsione con alette deflettrici regolabili singolarmente

Dimensioni

LH-ATEX	25	40	63	100
Α	500	630	800	1000
В	300	300	300	340
С	345	350	355	405

Unità ventilatore-motore completa con griglia di protezione, ventilatore assiale con ventola in alluminio, estremità palette con listello di copertura in plastica. Motore silenzioso ed esente da manutenzione, adatto a qualunque posizione di montaggio. Motore trifase 3 x 400 V, 50 Hz, grado di protezione IP 44, classe di calore CL F.

Collegamento a stella: bassa velocità, collegamento a triangolo: alta velocità. Temperatura ambiente max.: da -20 °C a +40 °C Protezione totale del motore tramite conduttore a freddo incorporato.

LH-ATEX	25	40	63	100
Potenza elettrica assorbita max.	(kW) 0,14/0,11	0,33/0,25	0,33/0,24	0,50/0,34
Velocità	(giri/min.)1350/1000	1350/1000	900/700	900/700
Corrente assorbita max.	(A) 0,28/0,19	0,66/0,44	0,60/0,40	0,89/0,55

Scambiatore di calore Cu/Al

4 tipi di scambiatori di calore per ogni tipo di aerotermo per acqua calda (PWW) o **acqua** surriscaldata (PHW).

Scambiatore di calore in Cu/Al, collettore in acciaio, estraibili lateralmente. Telaio in lamiera di acciaio zincato.

Attacchi filettatii

Avvertenze: raccordo filettato per PN 16 fino a 140 °C, mandata acqua sul lato di uscita aria in alto/in basso, ritorno acqua sul lato di entrata aria in alto/in basso. Lato di raccordo in direzione dell'aria destra/sinistra, raccordi scambiatore di calore, vedere tabella dati tecnici.

Scambiatore di calore in acciao/zincato

3 tipi di scambiatori di calore per ogni tipo di aerotermo per acqua calda (PWW) o **acqua surriscaldata** (PHW).

Scambiatore di calore e collettore in acciaio/zincato, estraibili lateralmente. Telaio in lamiera di acciaio zincato, raccordi con flangia e controflangia.

MORSETTIERA ATEX IN VERSIONE ANTIDEFLAGRANTE

montata e cablata

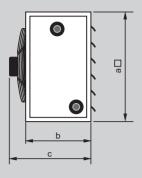
DISPOSITIVO DI SCATTO A CONDUTTORE FREDDO

per montaggio nel quadro elettrico sul posto

Avvertenza: il dispositivo di scatto a conduttore freddo può essere installato solo al di fuori della zona a rischio di esplosione.

DISPOSITIVO DI COMANDO A1Ü

Come protezione totale del motore per funzionamento a una velocità

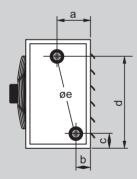

Tensione di esercizio 3 x 400 V, tensione di comando 230 V, potenza 3 kW, grado di protezione IP54 $\,$

Avvertenza: il dispositivo di comando A1Ü (solo per LH 40-ATEX, LH 63-ATEX, LH 100-ATEX) può essere montato solo al di fuori della zona a rischio di esplosione.

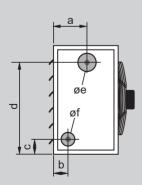
INTERRUTTORE ANTIDEFLAGRANTE

per dispositivo di comando A1Ü, tensione di esercizio 690 V, corrente max. 16 A [4A], grado di protezione IP 66 $\,$

AEROTERMO LH-EC / LH DIMENSIONI


DIMENSIONI APPARECCHIO BASE LH-EC / LH / LH-ATEX

Mis	ura	25	40	63	100
а	mm	500	630	800	1000
b	mm	300	300	300	340
С	mm	410	415	420	485


RACCORDI LH 25 -100, TIPO 1 - 4, CU/AL

Misu	ıra	25 -1	25 -2/-3/-4	40 -1	40 -2/-3/-4	63 -1	63 -2/-3/-4	100 -1	100 -2/-3/-4
а	mm	98	158	98	143	103	143	124	179
b	mm	68	68	68	83	63	83	84	89
С	mm	72	75	76	80	75	78	95	89
d	mm	425	425	554	550	726	722	906	912
Øe	mm	3/4"	1"	3/4"	1"	1"	11/4"	1"	11/2"

RACCORDI LH 25 - 100, TIPO 1 - 3, ST.VZ.

Mi	isura	25 -1	25 -2/-3/-4	40 -1	40 -2/-3/-4	63 -1	63 -2/-3/-4	100 -1	100 -2/-3/-4
а	mm	100	158	100	158	98	153	118	168
b	mm	66	68	66	68	68	73	88	98
С	mm	86	86	91	91	86	86	86	86
d	mm	409	405	534	530	705	695	885	865
Øe	e mm	3/4"	1"	3/4"	1"	1"	11/4"	1"	11/2"

RACCORDI LH 25 - 100, TIPO VAPORE, CU/AL

Misur	a	25	40	63	100
а	mm	137	158	152	165
b	mm	90	99	84	100
С	mm	91	60	63	85
d	mm	421	591	725	894
Øe	mm	DN40	DN40	DN50	DN50
Øf	mm	DN20	DN20	DN25	DN32

AEROTERMO LH-EC 25

TABELLA DATI TECNICI

per acqua	calda	,		2)	3)	4	1	per v	/apo	re s	aturo E	1	per acqua	surrisc	aldata 1		2)	3	
Velocità (g	giri/min.]	15	-	15		15		150					15				15		15		150	
Portata vol V ₀ [m³/h]	umetrica	24	00	23	00	20	50	19	50				24	00			24	00	23	00	20	50
v ₀ [111 /11]		$\dot{\mathbb{Q}}_{0}$	t _{LA}	٥٥	t _{LA}	$\mathbf{\dot{Q}}_{0}$	t _{LA}	٥٥	t _{LA}				, o	t _{LA}			٥٥	t _{LA}	$\mathbf{\dot{Q}}_{0}$	t _{LA}	$\mathbf{\dot{\varphi}}_{\mathrm{o}}$	t _{LA}
	t _{LE} [°C]	kW	°C	kW	°C	kW	°C	kW	°C		t _{LE}	[°C]	kW	°C		t _{LE} [°C]	kW	°C	kW	°C	kW	°C
	- 15 - 10	11,5 10,2	-2 2	16,4 14,7	4 7	19,4 17,4	10 13	24,4 21,9	18 20		-	15 10	28,5	16 20		- 15 - 10	25,4 24,1	13 17	35,7 33,8	26 30	41,5 39,4	39 42
	- 5	9,0	5	12,9	11	15,4	16	19,3	22		-	5	25,6	24		- 5	22,8	21	32,0	33	37,3	45
PWW	± 0	7,8	9	11,9	14	13,4	18	16,9	24	1,1	±	0	24,2	28	PHW	± O	21,5	25	30,2	37	35,2	48
45/35	+ 5	6,6	13	9,6	17	11,4	21	14,4	26	bar	+	5	22,9	32	110/90	+ 5	20,2	29	28,4	40	33,1	51
	+ 10 + 15	5,4 4,3	17 20	7,9 6,3	20 23	9,5 7,6	24 26	12,0 9,6	28 30		+	10 15	21,5	36 40		+ 10 + 15	18,9 17,7	33 37	26,6 24,9	44 47	31,1 29,1	54 57
	+ 20	3,1	24	4,7	26	5,7	28	7,2	31		+	20	18,8	44		+ 20	16,4	41	23,2	50	27,1	60
	- 15	12,8	-1	18,2	6	21,4	13	26,9	22		-	15	30,6	19		- 15	27,9	16	39,0	30	45,2	44
	- 10	11,5	3	16,4	9	19,4	16	24,3	24		-	10	29,1	23		- 10	26,6	20	37,2	34	43,1	47
PWW	- 5 ± 0	10,3 9,0	7 11	14,7 13,0	13 16	17,4 15,4	18 21	21,8 19,3	26 28	1,5	±	5 0	27,7	27 31	PHW	- 5 ± 0	25,2 23,9	24 28	35,3 33,5	37 41	41,0 38,9	50 53
50/40	+ 5	7,8	14	11,3	19	13,4	24	16,8	30	bar	+	5	24,9	35	120/100	+ 5	22,6	32	31,7	44	36,8	56
	+ 10	6,6	18	9,6	22	11,4	26	14,4	32		+	10	23,6	39		+ 10	21,3	36	29,9	48	34,7	59
	+ 15	5,5	22	8,0	25	9,5	29	12,0	33		+	15	22,2	42		+ 15	20,1	40	28,2	51	32,7	62
	+ 20	4,3 12,6	25 -1	6,3 18,3	28 6	7,6 21,8	31 13	9,7 27,5	35 22		+	20 15	32,6	46 21		+ 20	18,8 28,2	44 16	26,4 39,7	55 31	30,7 46,2	65 45
	- 10	11,4	3	16,5	9	19,8	16	25,0	25		-	10	31,2	25		- 10	26,8	20	37,8	34	44,0	48
	- 5	10,1	7	14,8	13	17,7	19	22,4	27		-	5	29,7	29		- 5	25,5	24	35,9	38	41,9	51
PWW 60/40	± 0	8,9	10	13,1	16	15,8	22	19,9	29	2,0 bar	±	0	28,3	33 37	PHW 130/100	± 0 + 5	24,2	28	34,1	42	39,8	55
60/40	+ 5 + 10	7,7 6,6	14 18	11,4 9,7	19 22	13,8 11,8	24 27	17,5 15,0	31 32	Dai	+	5 10	26,9 25,6	37 41	130/100	+ 5 + 10	22,9 21,6	32 36	32,3 30,5	45 49	37,7 35,7	58 61
	+ 15	5,4	22	8,1	25	9,9	29	12,6	34		+	15	24,2	45		+ 15	20,4	40	28,8	52	33,7	64
	+ 20	4,3	25	6,5	29	8,0	32	10,2	36		+	20	22,9	49		+ 20	19,1	44	27,1	55	31,7	67
	- 15	15,2	2	21,9	10	25,9	19	32,6	29		-	15	35,6	24		- 15	28,5	17	40,3	32	47,2	46
	- 10 - 5	14,0 12,7	6 10	20,1 18,3	14 17	23,8 21,8	21 24	30,0 27,4	32 34		-	10 5	34,2	29 33		- 10 - 5	27,2 25,8	21 25	38,4 36,6	35 39	45,0 42,9	49 53
PWW	± 0	11,5	13	16,6	20	19,8	27	24,9	36	3,0	±	0	31,3	37	PHW	± 0	24,5	29	24,8	42	40,8	56
70/50	+ 5	10,3	17	14,9	24	17,8	30	22,4	38	bar	+	5	29,9	41	140/100	+ 5	23,2	33	33,0	46	38,7	59
	+ 10 + 15	9,1 7,9	21 25	13,2 11,5	27 30	15,8 13,9	33 35	30,0 17,6	40 42		+	10 15	28,5	45 49		+ 10 + 15	21,9	37 41	31,2 29,4	49 53	36,7 34,6	62 65
	+ 20	6,7	28	9,9	33	12,0	38	15,2	43		+	20	25,8	52		+ 20	19,4	44	27,7	56	32,6	68
	- 15	17,8	5	25,4	14	29,9	24	37,4	36		-	15	39,8	29		- 15	30,7	19	43,6	35	49,9	50
	- 10	16,5	9	23,6	18	27,8	27	34,8	38		-	10	38,3	33		- 10	29,3	23	41,1	38	47,7	53
PWW	- 5 ± 0	15,3 14,0	13 16	21,8 20,1	21 25	25,8 23,7	30 33	32,3 29,8	41 43	5.0	±	5 0	36,8	37 41	PHW	- 5 ± 0	28,0 26,6	27 31	39,2 37,4	42 46	45,6 43,5	56 60
80/60	+ 5	12,8	20	18,3	28	21,7	35	27,3	45	bar	+	5	24,0	45	140/110	+ 5	25,3	35	35,6	49	41,4	63
	+ 10	11,6	24	16,6	31	19,7	38	24,8	47		+		32,6	49		+ 10	24,0	39	33,8	53	39,3	66
	+ 15	10,4	28	15,0	34	17,8	41	22,4	49		+	15	31,2	53		+ 15	22,8	43	32,0	46	37,3	69
	+ 20	9,2 20,4	32 8	13,3 28,9	37 18	15,9 33,9	43 29	20,0	51 42		+	20 15	29,8 49,0	57 35		+ 20	21,5	47	30,3	60	35,3	72
	- 10	19,1	12	27,1	22	31,7	32	39,6	45		-	10	43,5	39								
	- 5	17,0	15	25,3	25	29,7	35	37,0	47		-	5	42,0	43								
PWW 90/70	± 0 + 5	16,5 15,3	19 23	23,5 21,7	29 32	27,6	38 41	34,4 31,9	50 52	9,0 bar	± +	0 5	40,5 39,1	47 52								
30/70	+ 10	14,0	23 27	20,0	35	25,6 23,6	41 44	29,5	52 54	Dai	+	10	37,7	56								
	+ 15	12,8	31	18,3	39	21,6	46	27,0	56		+	15	36,3	60								
D. I I	+ 20	11,6	35	16,6	42	19,7	49	24,6	58		+	20	34,9	64								
Potenza el. ta [kW] (1 x		max.	0,165	max.	0,165	max.	0,165	max. (0,165				max. (0,165			max. I	0,165	max.	0,165	max. (0,165
Corrente a	ssorbita	max.	1,35	max.	1,35	max.	1,35	max.	1,35				max.	1,35			max.	1,35	max.	1,35	max.	1.35
[A] (1 x 23) Lancio app			•		•		•		•					•				•		•		
chio a pare	ete [m]*	17	7,5	16	,5	15	,5	14	,5				17	,5			17	,5	16	,5	15	,5
Lancio app		6	,2	6,	0	5,	6	5,	4				6,	2			6,	,2	6,	0	5,	6
Livello di p	oressio-	E	2	5	2	5	2	5	2				5	2				2	5	2	51	2
ne sonora Contenuto		5	L	- 3	_	- 3	_	- 3	_					_			3	L	- 3	_	- 3	_
acqua dell		0	,7	1,	0	1,	1	1,	8								0,	,7	1,	0	1,	,1
biatore di d	calore [l]			,				·					DN	10					,		,	
Raccordi s atore di ca		R ^s	3/4"	R	1"	R	1"	R:	1"				DN 4				R ³	3/4"	R	1"	R:	1"
* Con t _{LA} - t _{ar}		IK								1			וט ו	_3								

^{*} Con t_{LA} - t_{ambiente} = 10K ** Livello di pressione sonora a una distanza di 5 m, misurato in un locale a medio assorbimento, dimensioni del locale ca. 1500 m³

AEROTERMO LH-EC 40 TABELLA DATI TECNICI

per acqu	a calda									per	/apore	e sa	aturo		per acqua	surrisc	aldata					
Tipo Velocità [oiri/min 1		1 50	13:		13		13				1	13!				1 13		13		135	
Portata vo	-		00	37		34		30					38				38		37		341	
$^{\circ}_{0}$ [m ³ /h]																						
	t _{LE} [°C]	, Ç kW	t _{lA} °C	Ů₀ kW	t _{∟A} °C	Φ̈́ _o kW	t _{∟A} °C	Ο̈́ο kW	t _{∟A} °C		t _{le} [°C	ן,	Ο̈́ο kW	t _{∟A} °C		t _{LE} [°C]	, Ďο kW	t _{∟∧} °C	Ů₀ kW	t _{∟A} °C	Φ̈́o kW	t _{∟A} °C
	- 15	21,0	0	25,2	3	33,8	11	38,6	19			5	46,0	17		- 15	46,0	17	54,8	24	71,7	41
	- 10	18,8	3	22,5	6	30,3	14	34,7	21			.0	43,7	21		- 10	43,6	21	52,0	28	68,0	44
PWW	- 5 ± 0	16,6 14,4	7 11	19,9 17,3	10 13	26,9 23,5	17 19	30,7 26,9	23 25	1,1		5 0	41,4 39,2	25 29	PHW	- 5 ± 0	41,2 38,9	25 29	49,2 48,4	32 35	64,4 60,8	47 50
45/35	+ 5	12,2	14	14,7	16	18,3	20	23,1	27	bar		5	37,0	33	110/90	+ 5	36,6	32	43,6	39	57,3	53
	+ 10	10,1	18	12,2	20	15,0	23	19,3	28			.0	35,8	37		+ 10	34,3	36	40,9	42	53,8	56
	+ 15 + 20	8,0 5,9	21 25	9,7 7,2	23 26	11,7 8,4	25 27	15,6 11,9	30 32		+ 1	.5 n	32,7 30,5	40 44		+ 15 + 20	32,1	40 44	38,3 35,6	46 49	50,4 47,0	59 62
	- 15	23,3	1	27,9	5	37,3	14	42,4	22			5	49,4	19		- 15	50,3	20	60,0	28	78,0	46
	- 10	21,0	5	25,2	8	33,7	17	38,4	24			.0	47,1	24		- 10	47,9	24	57,1	32	74,3	49
PWW	- 5 ± 0	18,8 16,6	9 12	22,5 19,9	12 15	30,2 26,8	20 22	34,5 30,6	26 28	1,5		5	44,8 42,5	28 31	PHW	- 5 ± 0	45,5 43,2	28 32	54,3 51,5	35 39	70,7 67,1	52 55
50/40	+ 5	14,4	16	17,3	18	23,4	25	26,8	30	bar		5	40,3	35	120/100	+ 5	40,9	36	48,7	43	63,5	58
	+ 10	12,3	19	14,7	22	20,1	27	23,0	32			.0	38,1	39		+ 10	38,6	40	46,0	46	60,0	61
	+ 15 + 20	10,2	23 26	12,2 9,7	25 28	16,8 13,5	30 32	19,3 15,6	34 35			.5 .0	36,0 33,8	43 47		+ 15 + 20	36,3 34,1	43 47	43,3 40,6	50 53	56,6 53,2	64 67
	- 15	23,3	1	28,1	5	38,3	15	44,0	23		- 1	\rightarrow	52,7	22		- 15	51,1	21	60,9	29	79,9	47
	- 10	21,1	5	25,4	9	34,8	18	40,0	25			.0	50,3	26		- 10	48,6	25	58,1	32	76,2	51
PWW	- 5 ± 0	18,9 16,7	9 12	22,7	12 15	31,3 27,9	20 23	36,1 32,2	28 30	2,0		5	48,1 45,8	30 34	PHW	- 5 ± 0	46,3 43,9	29 32	55,2 52,4	36 40	72,6 69,6	54 57
60/40	+ 5	14,5	16	17,5	19	24,5	26	28,3	32	bar		5	43,6	38	130/100	+ 5	41,6	36	49,7	43	65,4	60
	+ 10	12,4	19	15,0	22	21,1	28	24,5	33			.0	41,4	42		+ 10	39,3	40	46,9	47	61,9	63
	+ 15 + 20	10,3	23 27	12,5 10,0	25 28	17,8 14,5	30 33	207,0 17,0	35 37			.5 .0	39,2 37,0	46 49		+ 15 + 20	37,0 34,8	44 48	44,2 41,6	50 54	58,5 55,0	66 69
	- 15	28,0	5	33,6	9	45,3	20	51,7	30			5	57,6	25		- 15	51,8	21	61,9	29	81,8	49
	- 10	25,7	8	20,8	13	41,7	23	47,7	32			.0	55,2	29		- 10	49,4	25	49,1	33	78,1	52
PWW	- 5 ± 0	23,4	12 16	28,2 25,5	16 19	38,2 34,7	26 29	43,7 39,8	34 37	3,0		5	52,9 50,6	33 37	PHW	- 5 ± 0	47,0 44,7	29 33	56,2 53,4	37 41	74,5 70,9	55 58
70/50	+ 5	19,0	19	23,9	23	31,3	31	35,9	39	bar		5	48,4	41	140/100	+ 5	42,4	37	50,7	44	67,3	62
	+ 10	16,9	23	20,3	26	27,9	34	32,1	41			.0	46,2	45		+ 10	40,1	41	48,0	48	63,8	65
	+ 15 + 20	14,7 12,6	26 30	17,8 15,2	29 32	24,6 21,3	36 39	28,4 24,6	42 44		+ 1		44,0 41,8	49 53		+ 15 + 20	37,8 35,6	44 48	45,3 42,6	51 55	60,3 56,9	67 70
	- 15	32,5	8	39,0	13	52,1	26	59,1	36			5	64,3	30		- 15	55,4	24	66,1	32	86,2	52
	- 10	30,2	12	36,2	16	48,5	29	55,1	39			.0	61,9	34		- 10	53,0	28	63,2	36	82,5	56
PWW	- 5 ± 0	28,0 25,7	15 19	33,5	20 23	44,9 41,4	31 34	51,1 47,2	41 43	5,0		5	59,6 57,3	38 42	PHW	- 5 ± 0	50,6 48,2	32 36	60,3 57,5	40 44	78,8 75,2	59 62
80/60	+ 5	23,5	23	28,2	27	38,0	37	43,3	46	bar			55,0	46	140/110	+ 5	45,9	39	54,7	47	71,6	65
	+ 10	21,3	26	25,6	30	34,6	40	39,5	48			- 1	52,7	50		+ 10	43,6	43	51,9	51	68,1	68
	+ 15 + 20	19,1 17,0	30	23,0	33 37	31,2 27,9	42 45	35,7 32,0	50 52		+ 1 + 2		50,5 48,3	54 58		+ 15 + 20	41,3 39,0	47 51	49,2 46,6	54 58	64,6 61,2	71 74
	- 15	37,1	11	44,3	17	58,7	31	66,4	43			.5	72,8	36					, .		,-	
	- 10	34,7	15	41,6	20	55,1	34	62,3	45			.0	70,3	40								
PWW	- 5 ± 0	32,4	18 22	38,8 36,1	24 27	51,5 48,0	37 40	58,3 54,4	48 50	9,0		- 1	68,0 65,6	44 49								
90/70	+ 5	27,9	26	33,4	31	44,5	42	50,5	52	bar		- 1	63,3	53								
	+ 10	25,7	30	30,7	34	41,1	45	46,7	54				61,0	57								
	+ 15 + 20	23,5 21,3	33 37	28,1 25,5	37 41	37,7 34,4	48 50	42,9 39,1	57 59		+ 1		58,8 56,6	61 65								
Potenza e	l. assorbi-		0,31	max.		max.		max.					max.				max.	0,31	max.	0,31	max.	0,31
ta [kW] (1 :	assorbita	max	c. 1,4	max	. 1,4	max	. 1,4	max	. 1,4				max	. 1,4			max	. 1,4	max	. 1,4	max	. 1,4
[A] (1 x 23 Lancio ap					•		•		•					•				•				·
chio a pa	rete [m]*	2	:6	2	5	22	.,5	19	,5				21	b			2	Ь	2	5	22	,5
Lancio ap chio a sof	ffitto [m]*	6	,1	5,	9	5,	5	5,	0				6,	1			6,	,1	5,	9	5,	5
Livello di ne sonora Contenut	dB [A]**	5	5	5	5	5	5	5	5				5	5			5	5	5	5	5	5
acqua del biatore di	llo scam-	1,	,0	1,	5	2,	0	2,	5								1,	0	1,	5	2,	0
Raccordi atore di c	scambi-		3/4"	R	1"	R	1"	R	1"				DN ⁴				R ^s	3/4"	R	1"	R:	1"

^{*} Con t_{LA} - t_{ambiente} = 10K ** Livello di pressione sonora a una distanza di 5 m, misurato in un locale a medio assorbimento, dimensioni del locale ca. 1500 m³

AEROTERMO LH-EC 63

TABELLA DATI TECNICI

per acqua	a calda									per v	apore:	saturo		per acqua	surrisc	aldata					
Tipo			1	2		3		4					D			1	1	2		3	
Velocità (Portata vol	-	10	00	10	00	10	00	100	00			10	000			10	00	10	00	100	00
\mathring{V}_0 [m ³ /h]	iumemoa	55	00	54	00	50	00	48	00			55	00			55	00	54	00	500	00
		Ο̈́ο	t _{LA}	O o	$t_{\scriptscriptstyle LA}$	O o	$t_{\scriptscriptstyle LA}$	$\mathbf{\mathring{Q}}_{0}$	$t_{\scriptscriptstyle LA}$			Φ ₀	t _{LA}			Ο,	$t_{\scriptscriptstyle LA}$	$\mathbf{\mathring{Q}}_{0}$	$t_{\scriptscriptstyle LA}$	$\mathbf{\dot{Q}}_{0}$	$t_{\scriptscriptstyle LA}$
	t _{LE} [°C]	kW	°C	kW	°C	kW	°C	kW	°C		t _{LE} [°C]		°C		t _{LE} [°C]	kW	°C	kW	℃	kW	°C
	- 15 - 10	34,4	2 5	44,7 40,0	7 10	53,6 48,1	13 16	65,3 58,7	21 23		- 15 - 10	1 '	19 25		- 15 - 10	73,8	21 24	95,4 90,5	32 35	112,6 106,8	45 48
	- 5	27,3	9	35,4	13	42,6	18	52,2	25		- 5	1 '			- 5	66,3	28	85,7	39	101,2	51
PWW	± O	23,8	12	30,9	16	37,3	21	45,7	27	1,1	± C			PHW	± 0	62,6	32	81,0	42	95,6	54
45/35	+ 5	20,4	16	26,4	19	32,0	23	39,4	28 30	bar	+ 5	1 '	36 40	110/90	+ 5	59,0	36	76,3	45	90,1	56
	+ 10 + 15	17,0 13,7	19 22	22,0 17,7	22 25	26,8 21,6	26 28	33,1 26,9	32		+ 10	1 '			+ 10 + 15	55,4 51,9	39 43	71,6 67,0	49 52	84,7 79,3	59 62
	+ 20	10,4	26	13,4	27	16,5	30	28,7	33		+ 20				+ 20	48,4	46	62,5	55	74,1	65
	- 15	37,9	3	49,2	9	58,9	16	71,6	25		- 15	1 '	22		- 15	80,5	24	104,1	36	122,3	50
	- 10 - 5	34,3	7 10	44,5 39,9	12 15	53,3 47,9	19 21	64,9 58,4	27 28		- 10 - 5	1 '	27 31		- 10 - 5	76,7 73,0	28 32	99,1 94,3	40 43	116,6 110,9	53 56
PWW	+ 0	27,3	14	35,4	18	42,5	24	51,9	30	1,5	± 0			PHW	± 0	69,3	35	89,5	46	105,3	59
50/40	+ 5	23,8	17	30,9	21	37,2	26	45,5	32	bar	+ 5		39	120/100	+ 5	65,6	39	84,7	50	99,8	62
	+ 10	20,4	21	26,5	24	32,0	29	39,2	34		+ 10	1 '	43		+ 10	62,0	43	80,1	53	94,3	65
	+ 15 + 20	17,1	24 28	22,1 17,8	27 30	26,8 21,7	31 33	33,0 26,9	35 37		+ 15	1 '			+ 15 + 20	58,5 54,9	46 50	75,4 70,9	56 59	88,9 83,6	68 70
	- 15	38,9	4	50,4	10	61,0	17	75,0	26		- 15	+	26		- 15	82,3	25	106,4	37	125,6	62
	- 10	35,3	7	45,7	13	55,5	20	68,4	28		- 10	1 '	30		- 10	78,5	29	101,5	41	119,9	55
DVACVAC	- 5	31,8	11	41,1	16	50,0	23	61,8	30	0.0	- 5	1 '	34	DLIVA	- 5	74,8	32	96,6	44	114,2	58
PWW 60/40	± 0 + 5	28,3	14 18	36,6 32,1	19 22	44,6 39,3	25 27	55,3 48,8	32 34	2,0 bar	± 0	1 '	38 42	PHW 130/100	± 0 + 5	71,1 67,4	36 40	91,8 87,1	48 51	108,6 103,1	61 64
	+ 10	21,4	21	27,7	25	34,0	30	42,5	36		+ 10	1 '	45	100/100	+ 10	63,8	44	82,4	54	97,6	67
	+ 15	18,1	25	23,3	28	28,8	32	36,1	37		+ 15	1 '	49		+ 15	60,2	47	77,8	58	92,2	70
	+ 20	14,7	28	18,9	31	23,6	34	29,8	39		+ 20	<u> </u>	53		+ 20	56,7	51	73,2	61	86,9	72 53
	- 15	46,0 42,4	7 11	59,7 55,0	14 18	71,8 69,2	23 26	87,6 80,9	33 36		- 15 - 10	, , ,	30 34		- 15 - 10	81,1	26 29	108,8 103,8	28 42	128,9 123,2	53 57
	- 5	38,8	14	50,3	21	60,7	28	74,3	38		- 5	1	38		- 5	76,6	33	99,0	45	117,5	60
PWW	± 0	35,3	18	45,7	24	55,3	31	67,8	40	3,0	± C	1 '	42	PHW	± 0	72,9	37	94,1	49	111,9	63
70/50	+ 5 + 10	31,8 28,4	22 25	41,2 36,7	27 30	49,9 44,6	34 36	61,3 55,0	42 43	bar	+ 5	- '	46 49	140/100	+ 5 + 10	69,2 65,6	41 45	89,4 84,7	52 56	106,3 100,8	66 69
	+ 15	25,0	28	32,3	33	39,4	38	48,7	45		+ 15		53		+ 15	62,0	48	80,1	59	95,4	71
	+ 20	21,6	32	27,9	36	34,2	41	42,4	47		+ 20	67,6	57		+ 20	58,5	52	75,5	62	90,1	74
	- 15	53,1	11	68,8	19	82,3	29	99,8	40		- 15	, , ,			- 15	89,1	28	115,0	41	135,3	57
	- 10 - 5	49,4 45,8	14 18	64,1 59,4	21 25	76,7 71,1	31 34	93,1 86,4	42 445		- 10 - 5	1 '	37 43		- 10 - 5	85,2 81,4	32 36	110,0 105,1	45 49	129,5 123,8	60 63
PWW		42,3		54,7	28	65,7	37	79,9	47	5,0	± C	1 '		PHW	± 0	77,7	40	100,3		118,2	
80/60	+ 5	38,7	25	50,2	32	60,3	39	73,5	49	bar	+ 5	1 '	51	140/110	+ 5	74,0	43	95,8	46	112,6	
	+ 10	35,3	29 32	45,6	35 38	54,9	42 44	67,1	51 52		+ 10				+ 10	70,4	47	90,8	59	107,1	72 75
	+ 15 + 20	31,8 28,4		41,2 36,8	30 40	49,7 44,5	47	60,8 54,6	52 54		+ 15				+ 15 + 20	66,8 63,2	51 55	86,1 91,5	62 65	101,7 96,3	78
	- 15	60,0	14	77,8	23	92,6	34	111,6	47			117,3	42								
	- 10	55,4	20	73,0	27	86,9	37	104,9	49			113,4									
PWW	- 5 ± 0	52,1 49,1	23 25	68,3 63,6	30 33	81,3 75,8	40 43	98,2 91,7	51 54	9,0		109,6									
90/70	+ 5	45,6	29	59,0	36	70,4	45	85,2	56	bar	+ 5										
	+ 10	42,0	32	54,4	39	65,0	48	78,8	58		+ 10	96,6									
	+ 15	38,6		49,9	42	59,7	50	72,5	60		+ 15										
Potenza el	+ 20 I. assorbi-	35,1		45,5		54,5	53	66,3	62		+ 20	1									
ta [kW] (1 x	(230 V)	max.	0,40	max.	0,40	max.	0,40	max.	0,40			max	. 0,40			max.	0,40	max.	0,40	max.	0,40
Corrente a [A] (1 x 23		max	. 1,8	max	. 1,8	max	. 1,8	max	. 1,8			max	k. 1,8			max	. 1,8	max	. 1,8	max.	. 1,8
Lancio ap	parec-	2	7	2	6	2	3	2	2			2	27			2	7	2	6	23	3
chio a par Lancio app																					
chio a sof Livello di p	fitto [m]*	7,	,3	7,	.1	6,	ರ	6,	U				',3			γ,	,3	7,	Τ.	6,	ರ
ne sonora	dB [A]**	5	6	5	6	5	6	5	6			5	6			5	6	5	6	56	6
Contenut	o di	_																			
acqua del biatore di		2	,5	3,	ס	3,	ס	5,	ס							2,	,5	3,	, o	3,	ס
Raccordis	scambi-	В	1"	R 1	1/4"	R 1	<u>1/4</u> "	R 1	1/4"				50 -			R	1"	R 1	1/4"	R 1 ¹	1/4"
* Con t t				., 1		., _		., _		I		I DV	125			l ''					

^{*} Con t_{LA} - t_{ambiente} = 10K ** Livello di pressione sonora a una distanza di 5 m, misurato in un locale a medio assorbimento, dimensioni del locale ca. 1500 m³

AEROTERMO LH-EC 100 TABELLA DATI TECNICI

per acqua	a calda									per v	/apor	e s	aturo		per acqua	surrisc	aldata					
Tipo		1		2		3		4									_ 1		2		3	
Velocità (q Portata vol	-	90	00	90	00	90	0	90	0				90	0			90	00	90	00	90)0
\hat{V}_0 [m ³ /h]	umemca	94	00	93	00	870	00	820	00				940	00			94	00	93	00	87	00
		Φ _o	$t_{\scriptscriptstyle LA}$	$\mathbf{\dot{Q}}_{0}$	$t_{\scriptscriptstyle LA}$	$\mathbf{\dot{Q}}_{0}$	$t_{\scriptscriptstyle LA}$	$\mathbf{\dot{Q}}_{0}$	$t_{\scriptscriptstyle LA}$				\dot{Q}_{o}	$t_{\scriptscriptstyle LA}$			Ο̈́ο	$t_{\scriptscriptstyle LA}$	$\mathbf{\dot{Q}}_{0}$	$t_{\scriptscriptstyle LA}$	$\mathbf{\dot{Q}}_{0}$	t _{LA}
	t _{LE} [°C]	kW	°C	kW	°C	kW	°C	kW	°C		t _{LE} ['		kW	°C		t _{LE} [°C]	kW	°C	kW	°C	kW	°C
	- 15 - 10	58,6 52,5	2 5	75,3 67,4	7 10	96,9 87,0	15 17	112,6 101,3	21 23			15 10	125,0 118,9	20 24		- 15 - 10	125,7 119,3	20 24	161,6 153,2	31 35	202,9 192,6	
	- 5	46,5	9	59,6	13	77,2	19	90,2	25		-	5	112,8	28		- 5	112,9	28	145,1	38	182,4	
PWW	± 0	40,6	12	52,0	16	67,6	22	79,2	27	1,1	±		102,8	31	PHW		106,7		137,0	41	172,4	
45/35	+ 5 + 10	34,8 29,9	16 19	44,4 36,9	19 22	58,1 48,7	24 26	68,4 57,7	29 31	bar	+	5 10	101,0 95,1	36 39	110/90	+ 5 + 10	100,5 94,4	36 39	129,0 121,1	45 48	162,5 152,7	
	+ 15	23,3	22	29,6	24	39,4	28	47,1	32			15	89,3	43		+ 15	88,4	43	113,3	51	143,1	
	+ 20	17,7	26	22,3	27	30,2	30	36,5	33			20	83,7	47		+ 20	82,4	46	105,6		133,6	
	- 15 - 10	64,6	3 7	83,1 75,2	9 12	106,4 96,5	17 20	123,1 111,8	25 27			15 10	134,3 121,8	23 27		- 15 - 10	137,2 130,8	24 28	176,4 168,0	35 39	220,3 209,9	
	- 10 - 5	58,4 52,4	10	67,4	15	86,6	22	100,6	29		-		122,0	31			124,4	31	159,6		199,7	
PWW	± O	46,5	14	59,6	18	77,0	25	89,6	31	1,5	±		116,0	35	PHW	± 0	118,1	35	151,5	46	189,6	
50/40	+ 5	40,6	17	52,0	21	67,4	27	78,8	32	bar	+	5	110,0	39	120/100	+ 5	111,8	39	143,5	49	179,7	
	+ 10 + 15	34,8 29,1	21 24	44,5 37,1	24 27	58,0 48,6	29 32	68,1 57,5	34 36			10 15	104,2 98,4	42 46		+ 10 + 15	105,7 99,6	43 46	135,5 127,7	52 56	169,9 160,2	
	+ 20	23,4	27	29,7	30	39,4	34	47,0	37			20	92,7	50		+ 20	93,6	50	119,9	59	150,7	72
	- 15	66,2	4	84,7	9	110,7	19	130,2	27			15	143,3	25		- 15	140,3		180,0	36	226,5	
	- 10 - 5	60,1 54,1	7 11	76,8 69,0	12 15	100,7 90,9	21 24	118,8 107,6	29 31		-	10 5	137,1 131,0	29 33			133,8 127,4	28 32	171,6 163,2	40 43	216,1 205,9	
PWW	± 0	48,2	14	61,3	19	81,2	26	96,5	33	2,0	±		124,9	37	PHW	± 0	121,1	36	155,2	47	195,8	
60/40	+ 5	42,3	18	53,7	22	71,6	29	85,6	35	bar	+		118,9	41	130/100	+ 5	114,9	40	147,1	50	185,9	
	+ 10 + 15	36,5 30,8	21 25	46,2 38,8	24 27	62,0 52,6	31 33	74,7 63,9	37 38				113,0 107,2	45 49			108,7 102,6	44 47	139,2 131,4	54 57	176,1 166,4	
	+ 20	25,1	28	31,4	30	43,2	35	53,1	40			20	101,4	53		+ 20	96,6	51	123,6	60	156,8	
	- 15	78,4	7	100,6	14	129,9	25	151,3	34			15	156,8	29		- 15	143,4	25	183,8	37	232,7	
	- 10 - 5	72,2 66,2	11 14	92,6 84,7	17 20	119,9 110,0	27 30	139,9 128,7	36 38		-		150,5 144,3	33 37			136,9 130,5	29 33	175,4 167,1	41 45	222,3 212,1	
PWW	± 0	60,2	18	76,9	23	100,2	32	117,6	40	3,0	±		138,2	41	PHW		124,2		159,0	48	202,0	
70/50	+ 5	54,2	21	69,2	26	90,5	35	106,6	42	bar	+	5	132,1	45	140/100	+ 5	117,9	41	150,9	51	192,0	
	+ 10	48,4	25	61,6	29 32	81,0	37 39	95,8	44				126,2 120,2	49 53		+ 10	111,8	45 48	142,9 135,1	55 58	182,1 172,4	
	+ 15 + 20	42,6 36,8	28 32	54,1 46,7	35	71,5 62,2	42	85,0 74,4	46 47			15 20	114,5	53 57		+ 15 + 20	105,7 99,6	52	127,3	61	162,8	
	- 15	90,4	11	116,2	18	148,7	30	171,8	41		-	15	175,1	34		- 15	151,8	28	194,7	40	243,7	
	- 10	84,2	14	108,1	21	138,6	33	160,4	43 45		-		168,7	39 43			145,2	32	186,2	44	233,3	
PWW	- 5 ± 0	78,1 72,0	18 21	100,2 92,3		128,6 118,8	36 38	149,1 138,0	43 47	5,0	±		162,5 156,3	47	PHW		138,8 132,4	36 40	177,9 169,7	48 51	223,0 212,9	
80/60	+ 5	66,0	25	84,5	31	109,1		127,0	49	bar	+		146,4	50	140/110		126,1		161,6		202,9	
	+ 10	60,1	29	76,8	34	99,5	43	116,1	51				144,1	55			119,9		153,6		193,0	
	+ 15 + 20	54,2 48,4		69,2 61,7	37 40	90,0	46	105,4 94,8	53 55				138,1 132,3	59 62			113,8 107.7		145,7 137,8		183,3 173,7	
		102,3	14	131,6	23	167,1	36	191,8	47				198,3	41								
	- 10	96,0		123,4		156,9		180,3	49		-		191,9	45								
PWW	- 5 ± 0	89,8 83,7	21 25	115,3 107,4	29 32	146,9 137,0	42 44	169,0 157,8	52 54	9,0	±		185,5 179,2	49 54								
90/70	+ 5	77,6	29	99,5	36		47	146,8	56	bar	+		173,0	58								
	+ 10	71,6	32	91,8	39	117,6	49	136,0	58				166,9	62								
	+ 15 + 20	65,7 59,9	36 39	84,1 76,6	42 45	108,0 96,6		125,2 114,6	60				160,7 154,8	96								
Potenza el		max.		max.		max.		max.				20	max.				max.	U E 0	max.	U E 0	max.	U E 0
ta [kW] (1 x Corrente a			•			IIIdX.	0,36										IIIdx.	U,JO	IIIdX.	0,36	IIIdX.	0,36
[A] [1 x 23	0 V)	max	. 2,7	max	. 2,7	max	2,7	max.	2,7				max.	2,7			max	. 2,7	max	. 2,7	max	. 2,7
Lancio ap chio a par		3	2	3	1	2	9	2'	7				3:	2			3	2	3	1	2	9
Lancio app	parec-	7,	9	7,	8	7,	6	7,1	2				7,	9			7,	9	7,	8	7,	.6
chio a sof Livello di p				•				•														
ne sonora	dB [A]**	5	6	5	Ь	51	j	56	o i				50	o i			5	6	5	6	5	6
Contenuto		3,	,5	5,	5	7,	5	9,	5													
biatore di	calore [l]			3,		.,							DAL									
Raccordi s		R	1"	R 1	1/2"	R 1	1/2"	R 1 ¹	/2"				DN 6				R	1"	R 1	1/2"	R 1	1/2"
* Con t t		UK											. 514		1							

^{*} Con t_{LA} - t_{ambiente} = 10K ** Livello di pressione sonora a una distanza di 5 m, misurato in un locale a medio assorbimento, dimensioni del locale ca. 1500 m³

AEROTERMO LH 25

TABELLA DATI TECNICI

per acqua	a calda																	per va	apore sa	turo			
Tipo Velocità [[oiri/min]	13		1 10	nn	13		2 100	nn	13		3 10	nn	13		4 100	าก			13		D 100	nn
Portata vo		21		170		20		160		18		14		170		13				21		170	
$^{\circ}_{0}$ [m ³ /h]																							
	t _{LE} [°C]	Ů₀ kW	t _{∟A} °C	Φ̈ _o kW	t _{∟∧} °C	Ů₀ kW	t _{∟A} °C	Ф _о kW	t _{∟A} °C	Ů kW	t _{∟∧} °C	Ф _о kW	t _{∟∧} °C	Ů kW	t _{∟A} °C	Ď₀ kW	t _{LA} °C		t _{LE} [°C]	Ů kW	t _{∟∧} °C	Q _o kW	t _{∟∧} °C
	- 15	10,7	-2	9,5	0	15,1	5	13,2	7	17,9	11	15,5	13	22,1	20	18,7	22		- 15	26,3	18	23,2	21
	- 10	9,5	2	8,5	3	13,5	8	11,8	10	16,0	14	13,9	16	19,8	22	16,8	24		- 10	25,0	22	22,0	25
PWW	- 5 ± 0	8,4 7,2	6 10	7,4 6,4	7 11	11,9 10,3	11 15	10,4 9,1	13 16	14,1 12,3	17 19	12,3 10,7	18 21	17,6 15,3	23 25	14,9 13,0	25 27	1,1	- 5 ± 0	22,4	30 34	19,7 18,6	33 36
45/35	+ 5	6,1	13	5,5	14	8,8	18	7,7	19	10,5	22	9,2	23	13,1	27	11,1	29	bar	+ 5	19,9	38	17,5	40
	+ 10	5,0	17	4,5	18	7,3	21	6,4	22	8,8	24	7,6	25	10,9	29	9,3	30		+ 10	18,6	41	16,4	44
	+ 15 + 20	4,0 2,9	21 24	3,5 2,6	21 25	5,8 4,3	24 27	5,1 3,8	24 27	7,0 5,3	27 29	6,1 4,6	28 30	8,8 6,6	30 32	7,5 5,7	31 33		+ 15 + 20	18,6 17,4	41 45	16,4 15,3	44 47
	- 15	11,9	0	10,5	1	16,7	7	14,6	9	19,7	14	17,1	16	24,4	23	20,5	25		- 15	28,2	21	24,9	24
	- 10	10,7	4	9,5	5	15,1	10	13,2	12	17,8	17	15,5	19	22,1	25	18,6	27		- 10	26,9	25	23,7	28
PWW	- 5 ± 0	9,5 8,4	8 11	8,5 7,5	9 12	13,5 11,9	14 17	11,8 10,4	15 18	16,0 14,1	19 22	13,9 12,3	21 24	19,8 17,5	27 29	16,7 14,8	29 31	1,5	- 5 ± 0	25,6 24,3	29 33	22,5 21,4	32 35
50/40	+ 5	7,3	15	6,5	16	10,4	20	9,1	21	12,3	25	10,7	26	15,3	31	12,9	32	bar	+ 5	23,0	36	20,3	39
	+ 10	6,2	19	5,5	19	8,8	23	7,7	24	10,5	27	9,2	28	13,1	32	11,1	34		+ 10	21,8	40	19,2	43
	+ 15 + 20	5,1 4,0	22 26	4,5 3,6	23 26	7,3 5,8	26 29	6,4 5,1	27 30	8,8 7,0	29 32	7,7 6,2	31 33	10,9 8,8	34 36	9,3 7,5	35 37		+ 15 + 20	20,5	44 48	18,1 17,0	47 50
	- 15	11,7	0	10,4	1	16,8	7	14,7	9	20,1	15	17,5	17	25,0	24	21,2	27		- 15	30,1	23	26,5	26
	- 10 - 5	10,6	4 7	9,4	5	15,2	11	13,3	13	18,2	17	15,9	20	22,7	26	19,3	29		- 10	28,8	27	25,3	30
PWW	- 5 ± 0	9,4	11	8,4 7,4	9 12	13,6 12,1	14 17	12,0 10,6	16 19	16,4 14,5	20 23	14,3 12,7	22 25	20,4 18,2	28 30	17,4 15,5	30 32	2,0	- 5 ± 0	27,5 26,2	31 35	24,2 23,0	24 38
60/40	+ 5	7,2	15	6,4	16	10,5	20	9,3	22	12,7	25	11,1	27	15,9	32	13,6	34	bar	+ 5	24,9	39	21,9	42
	+ 10	6,1	18	5,5	19	9,0	23	7,9	24	10,9	28	9,6	29	13,7	33	11,7	35		+ 10	23,6	43	20,8	46
	+ 15 + 20	5,0 4,0	22 26	4,5 3,6	23 26	7,5 6,0	26 29	6,6 5,3	27 30	9,2 7,4	30 32	8,1 6,5	31 34	11,5 9,4	35 37	9,9 8,1	37 38		+ 15 + 20	22,4	47 50	19,7 18,6	49 53
	- 15	14,1	3	12,6	5	20,1	12	17,6	14	23,8	20	20,7	23	29,5	31	25,0	34		- 15	32,9	27	29,0	30
	- 10	13,0	7	11,5	8	18,5	15	16,2	17	21,9	23	19,1	26	27,2	33	23,0	36		- 10	31,6	31	27,8	34
PWW	- 5 ± 0	11,8	10 14	10,5 9,5	12 16	16,9 15,3	18 21	14,8 13,4	20 23	20,1 18,2	26 28	17,5 15,9	28 31	24,9 22,6	35 37	21,1 19,2	38 40	3,0	- 5 ± 0	30,2	35 39	26,6 25,5	38 42
70/50	+ 5	9,5	18	8,5	19	13,7	25	12,0	26	16,4	31	14,3	33	20,4	39	17,3	42	bar	+ 5	27,6	43	24,3	46
	+ 10	8,4	22	7,5	23	12,2	28	10,7	29	14,6	34	12,7	36	18,2	41	15,5	43		+ 10	26,3	47	23,2	50
	+ 15 + 20	7,3 6,3	25 29	6,6 5,6	26 30	10,7 9,1	31 34	9,4 8,0	32 35	12,8 11,1	36 38	11,2 9,7	38 40	16,0 13,8	43 44	13,6 11,8	45 46		+ 15 + 20	25,1 23,8	50 54	22,1 21,0	53 57
	- 15	16,6	6	14,7	8	23,3	16	20,4	19	27,5	26	23,8	29	33,9	38	28,6	41		- 15	36,7	31	32,3	35
	- 10	15,4	10	13,6	12 15	21,7	19	18,9	22	25,6	28	22,2	31 34	31,6	40	26,6	43		- 10	35,3	36	31,1	40
PWW	- 5 ± 0	14,2 13,0	14 17	12,6 11,6	19	20,1 18,5	23 26	17,5 16,1	25 28	23,7 21,8	31 34	20,6 19,0	37	29,3 27,0	42 45	24,7 22,8	45 47	5,0	- 5 ± 0	34,0 32,7	40 44	29,9 28,8	44 48
80/60	+ 5	11,9	21	10,6	23	16,9	29	14,8	31	20,0	37	17,4	39	24,7	47	20,9	49	bar	+ 5	31,4	48	27,6	51
	+ 10	10,7	25	9,6	26	15,3	32	13,4	34	18,2		15,8	42	22,5	48	19,1	51		+ 10	30,1		26,5	55
	+ 15 + 20	9,6 8,5	29 32	8,6 7,6	30 33	13,8 12,2	35 38	12,1 10,7	37 40	16,4 14,6	42 44	14,3 12,7	44 46	20,3 18,1	50 52	17,2 15,4	53 54		+ 15 + 20	28,8 27,5	56 59	25,3 24,2	59 63
	- 15	18,9	9	16,8	11	26,5	20	23,1	23	31,1	31	26,9	34	38,1	44	32,1	48		- 15	41,5	37	36,5	42
	- 10 - 5	17,7 16,5	13 17	15,7 14,7	15 19	24,9 23,2	24 27	21,8 20,2	27 30	29,2 27,2	34 37	25,2 23,6	37 40	35,9 33,5	47 49	30,1 38,2	50 53		- 10 - 5	40,1 37,4	42 50	35,3 32,9	46 54
PWW	± 0	15,3	20	13,6	22	21,6	30	18,8	33	25,4	40	22,0	43	31,2	51	26,3	55	9,0	± 0	36,1		31,8	58
90/70	+ 5	14,2	24	12,6	26	20,0	34	17,4	36	23,5		20,4	45	28,9	54	24,4	57	bar	+ 5	34,8	58	30,6	62
	+ 10 + 15	13,0 11,9	28 32	11,6 10,6	30 33	18,4 16,8	37 40	16,1 14,7	39 42	21,7 19,,9	45 48	18,8 17,3	48 50	26,7 24,5	56 58	22,5	59 60		+ 10 + 15	34,8	58 62	30,6 29,5	62 66
	+ 20	10,8	35	9,6	37	15,3		13,4		18,1	50	15,7	53	22,3		18,9	63		+ 20			28,3	
Potenza e ta [kW] (3		max.	0,17	max.	0,10	max.	0,17	max.	0,10	max.	0,17	max.	0,10	max.	0,17	max.	0,10			max.	0,17	max.	0,10
Corrente	assorbi-	may	N 32	max.	N 16	may	N 32	max.	N 16	may	በ 32	max.	N 16	may	N 32	max.	<u> </u>			may	N 32	max.	N 16
ta [A] (3 x Lancio ap			•		•		•		•		•		•										·
chio a pa	rete [m]*	15	,5	12	.,5	14	,5	1	2	1	3	10	1,5	12	,5	10)			15	,5	12	,5
Lancio ap chio a sof		5	7	4,	,7	5,	4	4,	5	5,	0	4,	,2	4,	8	4,	0			5,	,7	4,	,7
Livello di ne sonora	pressio-	5	6	5	0	5	6	5	0	5	6	5	0	5	6	5	0			5	6	50	0
Contenut	to di																						
acqua de biatore di			0	,7			1,	,0			1	.,1			1	,8							
Raccordi	i scam-		R	3/4"			R	1"			В	1"			R	1"				П	N 40	- DN 21	0
biatore d	li calore	101/	n	/4		l	п	1			п	1			n	1		I		ا ا	14 TU	טוע בו	J

^{*} Con t_{LA} - t_{ambiente} = 10K ** Livello di pressione sonora a una distanza di 5 m, misurato in un locale a medio assorbimento, dimensioni del locale ca. 1500 m³

AEROTERMO LH 25 TABELLA DATI TECNICI

Tipo Velocità [giri/min.] Portata volumetrica \mathring{V}_0 [m³/h] $\begin{matrix} \mathring{U}_0 \\ & & \\ & \end{matrix}$ $\begin{matrix} \mathring{U}_0 \\& \end{matrix}$ \begin{matrix}	1350 2100 t _{LA} °C 6 15 8 19 2 23 9 27 9 30 6 34 4 38 2 42	100 170 \$\hat{\psi}_0\$ kW 20,9 19,8 18,7 17,6 16,6 15,6		133 200		100 160 Ç ₀ kW 28,5		13: 18:		100 145 0 0	
Portata volumetrica \mathring{V}_0 [m³/h] \mathring{Q}_0 $1_{L_E}[^{\circ}C]$ kW -15 23,6 -10 22,7 -5 21,7 PHW ± 0 19,8 110/90 $+5$ 18,7 $+10$ 17,5 $+15$ 16,4 $+20$ 15,2 -15 25,8 -10 24,6 -5 23,4	t _{LA} °C 6 15 8 19 1 23 9 27 9 30 6 34 4 38 2 42	0,0 kW 20,9 19,8 18,7 17,6 16,6 15,6	t _{LA} °C 18 21 25 29	00 kW 32,7 31,0 29,4	t _{LA} °C 28 32	Ů₀ kW 28,5	t _{∟A} °C	Ο̈́ο kW	t _{LA}	٥٥	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	°C 15 15 19 23 27 30 34 4 38 22 42	kW 20,9 19,8 18,7 17,6 16,6 15,6	°C 18 21 25 29	kW 32,7 31,0 29,4	°C 28 32	kW 28,5	°C	kW			t _{LA}
$\begin{array}{c ccccc} & t_{\text{LE}} [^{\circ}\text{C}] & \text{kW} \\ & - & 15 & 23,6 \\ & - & 10 & 22,6 \\ & - & 5 & 21,7 \\ & + & 5 & 18,7 \\ & + & 10 & 17,5 \\ & + & 15 & 16,6 \\ & + & 20 & 15,6 \\ & - & 15 & 25,6 \\ & - & 10 & 24,6 \\ & - & 5 & 23,6 \\ \end{array}$	°C 15 15 19 23 27 30 34 4 38 22 42	kW 20,9 19,8 18,7 17,6 16,6 15,6	°C 18 21 25 29	kW 32,7 31,0 29,4	°C 28 32	kW 28,5	°C	kW			
- 10 22,3 - 5 21,7 PHW ± 0 19,8 110/90 + 5 18,7 + 10 17,5 + 15 16,4 + 20 15,2 - 15 25,8 - 10 24,6 - 5 23,4	19 1 23 27 30 34 4 38 2 42	19,8 18,7 17,6 16,6 15,6	21 25 29	31,0 29,4	32		20		U	kW	°C
- 5 21, PHW ± 0 19,6 110/90 + 5 18,7 + 10 17,5 + 15 16,6 + 20 15,6 - 15 25,6 - 10 24,6 - 5 23,6	23 27 27 30 34 4 38 2 42	18,7 17,6 16,6 15,6	25 29	29,4				38,1	41	32,9	45
PHW ± 0 19,6 110/90 + 5 18,7 + 10 17,5 + 15 16,6 + 20 15,6 - 15 25,6 - 10 24,6 - 5 23,6	27 2 30 3 34 4 38 2 42	17,6 16,6 15,6	29			27,0 25,5	36 39	36,1 34,2	44 47	31,2 29,5	48 51
110/90 + 5 18,7 + 10 17,5 + 15 16,4 + 20 15,6 - 15 25,6 - 10 24,6 - 5 23,4	30 34 4 38 2 42	16,6 15,6			39	24,1	42	32,3	50	25,5 27,9	54
+ 15 16,4 + 20 15,7 - 15 25,6 - 10 24,6 - 5 23,4	38 2 42			26,1	42	22,7	46	30,4	53	26,2	57
+ 20 15,2 - 15 25,6 - 10 24,6 - 5 23,4	2 42	1/1 [37	24,5	46	21,3	49	28,5	56	24,6	59
- 15 25,6 - 10 24,1 - 5 23,4		14,5	40	22,9	49	19,9	52 55	26,7	59	23,1	62 CF
- 10 24,6 - 5 23,4	. 10	13,5 22,9	44 21	21,3 35,8	52 32	18,5 31,1	55 37	24,9 41,5	62 46	21,5 35,7	65 50
		21,8	25	34,1	36	29,6	40	39,5	49	34,1	53
DH/W + U 33.4		20,7	29	32,4	40	28,1	43	37,5	52	32,4	57
		19,6	32	30,7	43	26,7	47	35,6	56	30,7	59
120/100 + 5 21,0 + 10 19,8		18,6 17,5	36 40	29,1 27,4	47 50	25,3 23,9	50 53	33,7 31,9	59 61	29,1 27,5	62 65
+ 15 18,6		16,5	44	25,8	53	22,5	57	30,0	64	25,9	68
+ 20 17,5	45	15,5	47	24,2	56	21,1	60	28,2	67	24,3	71
- 15 26,		23,2	21	36,4	33	31,7	37	42,4	47	36,6	52
- 10 24,9 - 5 23,7		22,1 21,0	25 29	34,7 33,0	37 40	30,2 28,7	41 44	40,4 38,5	51 54	34,9 33,2	55 58
PHW ± 0 22,		19,9	33	33,0	40 44	28,7 27,3	44 48	36,5	5 4 57	33,2 31,6	58 61
130/100 + 5 21,2		18,8	37	29,7	47	25,8	51	34,6	60	29,9	64
+ 10 20,3		17,8	40	28,0	51	24,4	54	32,8	63	28,3	67
+ 15 18,9		16,8	44	28,0	51	24,4	54	32,8	63	28,3	67
+ 20 17,7 - 15 26,4		15,7 23,4	48 22	24,9 37,0	57 34	21,7 32,2	61 38	29,1 43,3	69 49	25,2 37,4	72 53
- 10 25,2		22,3	26	35,3	38	30,8	42	41,3	52	35,7	57
- 5 24,0		21,3	29	33,6	41	29,3	45	39,4	55	34,1	60
PHW ± 0 22,7		20,2	33	31,9	45	27,9	49	37,4	58	32,4	63
140/100 + 5 21,6 + 10 20,4		19,1 18,1	37 41	30,3 28,7	48 52	26,4 25,0	52 55	35,5 33,7	61 64	30,8	66 68
+ 15 19,2		17,1	45	27,1	55	23,6	59	31,8	67	29,2 27,6	71
+ 20 18,0		16,0	48	25,5	58	22,2	62	30,0	70	26,0	74
- 15 28, ^t		25,2	24	39,4	37	34,3	42	45,7	52	39,5	57
- 10 27,2		24,1	28 32	37,7	41	32,8	45	43,8	56	37,7	60 64
- 5 25,9 PHW ± 0 24,7		23,0 21,9	32 36	36,0 34,3	45 48	31,3 29,8	49 52	41,8 39,9	59 62	36,1 34,4	67
140/110 + 5 23,5		20,8	40	32,7	52	28,4	56	38,0	65	32,8	70
+ 10 22,3		19,8	44	31,0	55	27,0	59	36,1	68	31,2	72
+ 15 21,3		18,7	48	29,4	58	25,6	62	34,2	71	29,6	75
+ 20 19,9	49	17,7	51	27,8	62	24,2	66	32,4	74	28,0	78
ta [KW] [3 X 4UU V]	nax. 0,17	max.	0,10	max.	0,17	max.	0,10	max.	0,17	max.	0,10
Corrente assorbita [A] (3 x 400 V)	nax. 0,32	max.	0,16	max.	0,32	max.	0,16	max.	0,32	max.	0,16
Lancio apparec-	15,5	12,	.5	14	.5	12)	1:	3	10	.5
chio a parete [m]* Lancio apparec-											
chio a soffitto [m]*	5,7	4,	7	5,	4	4,	5	5,	0	4,	2
Livello di pressio- ne sonora dB [A]**	56	50)	5	6	50)	5	6	5	0
Contenuto di											
acqua dello scam-	0	1,7			1,	0			1	,1	
biatore di calore [l] Raccordi scam-	n	3/4"			R	1"			R	1"	
biatore di calore	K	74			К	1			К	1	

AEROTERMO LH 40

TABELLA DATI TECNICI

per acqu	ıa calda																	per va	apore sa	aturo			
Tipo	F. 1. 1 / 1 . 1	100		1	0.0	1 10		2	20	1 101		3	00	1 101		4	0.0			1 10		D 10/	0.0
	[giri/min.] olumetrica	13		10		13		100		13		100		13		10				13		100	
\mathring{V}_0 [m ³ /h]		35		25		34		24		310		22		28		20				35		25	
	t _{LE} [°C]	Ů kW	t _{∟A} °C	Φ̈́ _o kW	t _{∟∧} °C	Φ _o kW	t _{∟A} °C	Ů₀ kW	t _∟ °C	Ů₀ kW	t _{∟A} °C	Ď₀ kW	t _{∟A} °C	Ů₀ kW	t _{∟∧} °C	Ο̈́ο kW	t _∟ °C		t _{LE} [°C]	, kW	t _{∟∧} °C	Ď₀ kW	t _{∟A} °C
	- 15	20,1	0	16,5	3	24,0	4	19,5	7	31,9	12	25,3	16	36,3	19	28,4	23		- 15	43,8	18	35,7	23
	- 10	17,9	4	14,8	6	21,4	7	17,4	10	28,6	15	22,7	18	32,6	21	25,5	24		- 10	41,6	22	34,0	27
PWW	- 5 ± 0	15,8	7 11	13,1 11,3	9 13	18,9 16,4	10 14	15,4 13,4	13 16	25,3 22,1	17 20	20,2 17,6	20 22	28,9 25,3	23 25	22,7 19,9	26 28	1,1	- 5 ± 0	39,4	26 30	32,2 30,5	31 34
45/35	+ 5	11,7	15	9,7	16	14,0	17	11,4	19	18,9	22	15,1	25	21,7	27	17,1	29	bar	+ 5	35,2	34	28,8	38
	+ 10	9,6	18	8,0	19	11,6	20	9,5	21	15,8	25	12,7	27	18,2	29	14,4	312		+ 10	33,2	38	27,1	42
	+ 15	7,7	21	6,4	23	9,2	23	7,5	24	12,7	27	10,2	29	14,7	31	11,6	32		+ 15	31,1	41	25,4	45
	+ 20	5,7 22,2	25 2	4,8	26 4	6,9 26,6	26 6	5,7 21,5	27 9	9,7	29 15	7,8 27,9	31 19	11,2 39,9	32 23	8,9 31,1	33 26		+ 20	29,1 47,0	45 21	23,8	49 26
	- 10	20,1	5	16,5	8	24,0	9	19,4	12	31,7	18	25,2	21	36,1	25	28,2	28		- 10	44,8	25	36,6	30
	- 5	17,9	9	14,8	11	21,4	12	17,4	15	28,5	20	22,7	23	32,5	27	25,4	30		- 5	42,6	29	34,8	33
PWW	± 0	15,8	13	13,1	15	18,9	16	15,4	18	25,2	23	20,1	26	28,8	29	22,6	32	1,5	± 0	40,6	33	33,1	37
50/40	+ 5 + 10	13,8	16 20	11,4 9,7	18 21	16,5 14,0	19 22	13,4 11,4	21 24	22,1 18,9	25 28	17,6 15,1	28 30	25,2 21,7	31 33	19,8 17,0	33 35	bar	+ 5 + 10	38,4	36 40	31,4 29,7	41 45
	+ 15	9,7	23	8,0	25	11,6	25	9,5	27	15,8	30	12,7	32	18,2	34	14,3	36		+ 15	34,3	44	28,0	48
	+ 20	7,7	27	6,4	28	9,3	28	7,6	30	12,8	32	10,2	34	14,7	36	11,6	38		+ 20	32,2	48	26,3	52
	- 15	22,3	2	18,4	5	26,7	6	21,8	9	36,1	16	28,9	20	41,5	24	32,6	28		- 15	50,1	23	40,9	28
	- 10 - 5	20,1	6 9	16,7 14,9	8 11	24,2 21,6	9 13	19,7 17,7	12 15	32,8 29,5	19 21	26,2 23,7	22 25	37,7 34,0	26 28	29,7 26,8	30 32		- 10 - 5	47,9 45,8	27 31	39,1 37,4	32 36
PWW	± 0	15,9	13	13,2	15	19,2	16	15,7	18	26,3	24	21,1	27	30,4	30	24,0	34	2,0	± 0	43,6	35	35,6	40
60/40	+ 5	13,9	16	11,6	18	16,7	19	13,7	21	23,1	26	18,6	29	26,7	32	21,2	35	bar	+ 5	41,5	39	33,9	44
	+ 10	11,9	20	9,9	22 25	14,3	22 25	11,8	24 27	20,0	29	16,1	31	23,2	34	18,4	37		+ 10	39,4	43	32,2	47
	+ 15 + 20	9,9	23 27	8,3 6,6	28	11,9 9,6	28	9,8 7,9	30	16,8 13,7	31 33	13,6 11,1	33 35	19,6 16,1	36 37	15,6 12,9	38 39		+ 15 + 20	37,3	47 50	30,5 28,8	51 55
	- 15	26,7	5	22,0	8	31,9	10	25,9	14	42,6	21	33,9	26	48,6	31	38,0	35		- 15	54,8	27	44,7	23
	- 10	24,5	9	20,3	12	29,4	13	23,9	17	39,3	24	31,3	28	44,9	33	35,1	37		- 10	52,6	31	42,9	36
PWW	- 5	22,4	13	18,5	15	26,8 24,3	17 20	21,8	20	36,0	27 30	28,7	31 33	41,2	35 38	32,3	39 41	2.0	- 5	50,4	35	41,1	40 44
70/50	± 0 + 5	20,3	16 20	16,8 15,1	19 22	21,8	23	19,8 17,8	23 26	32,7 29,5	32	26,1 23,6	36	37,5 33,9	40	29,4 26,6	41	3,0 bar	± 0 + 5	48,2 46,1	39 43	39,4 37,6	44
	+ 10	16,1	23	13,4	26	19,3	27	15,8	29	26,3	35	21,1	38	30,3	41	23,9	45		+ 10	44,0	47	35,9	52
	+ 15	14,1	27	11,7	29	16,9	30	13,8	32	23,2	37	18,6	40	26,7	43	21,1	46		+ 15	41,9	50	34,2	55
	+ 20 - 15	31,1	30 9	10,1 25,6	32 12	14,5 37,1	33 14	11,9 30,1	35 18	20,1 49,0	39 27	16,2 38,9	42 32	23,2 55,6	45 38	18,4 43,3	48 42		+ 20	39,8	54 31	32,5 49,9	59 38
	- 10	28,9	12	23,8	16	34,5	17	27,9	21	45,6	30	36,2	35	51,8	40	40,4	45		- 10	58,9	36	48,1	42
	- 5	26,7	16	22,0	19	31,9	21	25,9	25	42,3	33	33,6	37	48,1	42	37,5	47		- 5	56,7	40	46,2	46
PWW 80/60	± 0 + 5	24,5	20	20,2	23	29,3	24	23,8	28	39,0		31,0	40	44,4	44	34,7	49 ₋₁	5,0 bar	± 0 + 5		44	44,5	50
80/60	+ 10	22,4	23 27	18,5 16,8	26 30	26,8 24,3	28 31	21,8 19,8	31 34	35,8 32,6	38 41	28,5 26,0	42 44	40,8 37,2	47 49	31,9 29,1	51 52	Dai.	+ 10	52,3 50,2	48 52	42,7 40,9	54 58
	+ 15	18,3	30	15,1	33	21,9	34	17,8	37	29,4		23,5	47	33,6	51	26,4	54		+ 15	48,1	56	39,2	61
	+ 20	16,2	34	13,4	36	19,4	37	15,9	40	26,3		21,0	49	30,1	52	23,7	56		+ 20		60	37,5	65
	- 15 - 10	35,4	12 16	29,1 27,3	16 19	42,1 39,5	18 21	34,1 32,0	23 26	55,2 51,8	32 35	43,7 41,1	38 40	62,4 58,6	44 47	48,5 45,5	49 52		- 15 - 10	69,3 67,0	38 42	56,4 54,6	45 49
	- 5	30,9	19	25,5	23	36,9	25	29,9	29	48,5		38,4	43	54,8	49	42,7	54		- 5	64,7	46	52,7	53
PWW	± 0	28,8	23	23,7	27	34,3	28	27,8	32	45,2	41	35,8	46	51,1	51	39,8	56	9,0	± 0	62,5	50	50,9	57
90/70	+ 5	26,6	27	21,9	30	31,8	32	25,7	36	41,9	44	33,3	48	47,5	53	37,0	58	bar	+ 5	60,3	54	49,1	61
	+ 10 + 15	24,5	30 34	20,2 18,5	33 37	29,2 26,8	35 38	23,7 21,7	39 42	38,7 35,5	46 49	30,7 28,2	51 53	43,9 40,3	56 58	34,2 31,5	60 62		+ 10 + 15	58,1 56,0		47,3 45,6	65 69
	+ 20	20,3		16,8		24,3		19,7		32,4		25,8		36,8		28,8			+ 20			43,9	
Potenza e ta [kW] (3	el. assorbi-	max.	0,28	max.	0,22	max.	0,28	max.	0,22	max.	0,28	max.	0,22	max.	0,28	max.	0,22			max.	0,28	max.	0,22
Corrente		max.	nε	max	ПЗ	max	ΠE	max.	ПЗ	max.	ΠE	max	ПЗ	max.	0.6	max	ПЗ			max	ΠE	max.	ПЗ
ta [A] (3 : Lancio a			•		,				•		•				•		•				•		•
chio a pa	arete [m]*	2	3	1	6	22	2,5	1	5	2	0	13	,5	18	8	1	2			2	3	16	3
Lancio ap	pparec- offitto [m]*	5,	6	4	,1	5,	5	3,	9	5,	0	3,	6	4,	5	3,	3			5,	6	4,	,1
Livello di	i pressio-	6	n	5	4	6	n	54	4	6	n	5	4	6	n	5	4			6	n	54	4
ne sonor Contenu	ra dB [A]** to di		J	- 0	1		5	0.	'		5	0	'		5		'				5	0.	
acqua de	ello scam-		1	,0			1	,5			2	,0			2	2,5							
biatore d Raccord	li calore [l]																						
	di calore		R	3/4"			R	1"			R	1"			R	1"				D	N 40	- DN 21	0
* Cont		10 <i>V</i>																					

^{*} Con t_{LA} - t_{ambiente} = 10K **Livello di pressione sonora a una distanza di 5 m, misurato in un locale a medio assorbimento, dimensioni del locale ca. 1500 m³

AEROTERMO LH 40 TABELLA DATI TECNICI

per acqua :	surrisc	aldata		1				,				2	
Tipo Velocità [gi	iri/min.]	13	50	100	00	13		2 10	00	13		3 10	00
Portata volu V ₀ [m³/h]	ımetrica	35	00	25	00	34	00	24	00	31	00	22	00
*() [111 /11]		$\mathbf{\mathring{Q}}_{0}$	t _{LA}	$\mathbf{\mathring{Q}}_{0}$	t _{LA}	O	t _{LA}	$\mathbf{\mathring{Q}}_{\mathrm{o}}$	t _{LA}	, O	t _{LA}	$\mathbf{\mathring{Q}}_{0}$	t _{LA}
	t _{LE} [°C]	kW	°C	kW	°C	kW	°C	kW	°C	kW	°C	kW	°C
	- 15 - 10	43,8 41,5	18 22	35,9 34,1	23 27	52,1 49,4	26 29	42,0 39,8	31 35	67,4 63,9	43 46	53,1 50,4	49 52
	- 5	39,3	26	32,2	31	46,7	33	37,7	38	60,5	49	47,7	55
PHW 110/90	± 0 + 5	37,1	30	30,4	34	44,1	36	35,6	42	57,2	52	45,1	58
110/90	+ 5	4,9 32,7	33 37	28,6 26,9	38 41	41,5 38,9	40 43	33,5 31,4	45 48	53,8 50,6	55 57	42,5 40,0	60 63
	+ 15	30,6	41	25,1	45	36,4	47	29,4	51	47,4	60	37,4	65
	+ 20	28,5 48,0	44 21	23,4 39,3	48 27	33,9 56,9	50 29	27,4 45,8	54 36	44,2 73,3	63 48	34,9 57,7	68 54
	- 10	45,7	25	37,4	30	54,2	33	43,7	39	69,8	51	54,9	58
DUNA	- 5	43,4	29	35,6	34	51,5	37	41,5	43	66,4	54	52,3	60
PHW 120/100	± 0 + 5	41,2 39,0	33 37	33,8 31,9	38 42	48,9 46,2	40 44	39,4 37,3	46 49	63,0 59,7	57 60	49,6 47,0	63 66
	+ 10	36,8	41	30,2	45	43,7	47	35,2	53	56,4	63	44,5	69
	+ 15 + 20	34,6 32,5	44 48	28,4 26,7	49 52	41,1	51 54	33,1 31,1	56 59	53,2 50,0	66 68	41,9 39,4	71 74
	- 15	48,7	22	40,0	27	38,6 57,9	30	46,7	37	75,1	49	59,2	56
	- 10	46,4	26	38,1	31	55,2	34	44,5	40	71,6	52	56,5	59
PHW	- 5 ± 0	44,1 41,9	30 34	36,2 34,4	35 39	52,5 49,8	38 41	42,4 40,2	44 47	68,2 64,8	56 59	53,8 51,2	62 65
130/100	+ 5	39,7	37	32,6	42	47,2	45	38,1	50	61,5	62	48,6	68
	+ 10	37,5	41	30,8	46	44,6	48	36,1	54	58,2	65	46,0	71
	+ 15 + 20	35,3 33,2	45 49	29,1 27,3	49 53	42,1 39,5	52 55	34,0 32,0	57 60	55,0 51,8	67 70	43,5 41,0	73 76
	- 15	49,4	22	40,6	28	58,9	31	47,6	38	76,9	51	60,8	58
	- 10 - 5	47,1 44,9	26 30	38,8 36,9	32 36	56,1 53,5	35 38	45,4 43,2	41 45	73,5 70,0	54 57	58,1 55,4	61 64
PHW	± 0	44,5 42,6	34	35,3	39	50,8	42	41,1	48	66,7	60	52,8	67
140/100	+ 5	40,4	38	33,3	43	48,2	45	39,0	51	63,3	63	50,2	70
	+ 10 + 15	38,3 36,1	42 46	31,5 29,8	47 50	45,6 43,0	49 52	36,9 34,9	55 58	60,0 56,8	66 69	47,6 45,0	73 76
	+ 20	34,0	49	28,0	54	40,5	56	32,9	61	53,6	72	42,5	78
	- 15	52,8	25	43,3	31	62,7	34	50,5	41	81,0	54	63,7	62
	- 10 - 5	50,5 48,2	29 33	41,4 39,6	35 39	60,0 57,3	38 41	48,3 46,2	44 48	77,5 74,0	58 61	61,0 58,3	65 68
PHW	± 0	46,0	37	37,7	42	54,6	45	44,0	51	70,6	64	55,7	71
140/110	+ 5	43,7	41	35,9	46	52,0	49	41,9	55	67,3	67	53,1	74
	+ 15	41,5 39,4	45 48	34,1 32,3	50 53	49,4 46,8	52 56	39,8 37,8	58 62	64,0 60,7	70 73	50,5 47,9	77 79
	+ 20	37,2	52	30,6	57	44,2	59	35,7	65	57,5	76	45,4	82
	100 V)		0,28	max.	0,22	max.	0,28	max.	0,22	max.	0,28	max.	0,22
Corrente as ta [A] (3 x ^L	te assorbi- 3 x 400 V) max. 0,6 apparec-			max			. 0,6	max			. 0,6	max	
Lancio app chio a pare		2	!3	10	6	22	2,5	1	5	2	0	13	3,5
Lancio appa	arec-	5	,6	4,	1	5	,5	3	,9	5,	,0	3,	,6
Livello di pi ne sonora d Contenuto	parec- itto [m]* pressio- dB [A]** d di o scam- calore [l] scambi-		0	5	4	6	0	5	4	6	0	5	4
acqua dello biatore di c	scam-		1	,0			1	,5			2	,0	
Raccordi s atore di ca	cambi-		R	3/4"			R	1"			R	1"	

AEROTERMO LH 63

TABELLA DATI TECNICI

per acqu	a cal	da																	per va	apore sa	aturo			
Tipo Velocità (niri/r	nin 1	90		1 70	nn	90		2 70	ın	90		3 70	ın	90		4 70	n			90		ם 70	ın
Portata vo	-0	-	530		40		52		39		46		35		441		34				53		40	
	t _{li}	[°C]	Ο ₀ kW	t _{∟A} °C	Ο̈́ο kW	t _{∟A} °C	Ο ₀ kW	t _{∟A} °C	Ο̈́ο kW	t _{∟A} °C	Ο ₀ kW	t _{lA} °C	Ο̈́ο kW	t _{∟A} °C	Ο̈́ο kW	t _{∟A} °C	Ο ₀ kW	t _{LA} °C		t _{LE} [°C]	Ο ₀ kW	t _{∟A} °C	Ο̈́ο kW	t _{∟A} °C
	-	15	33,6	2	28,6	4	43,6	7	36,5	10	50,7	14	42,1	17	61,3	22	50,5	24		- 15	72,4	21	61,0	25
	-	10 5	30,2 26,7	5 9	25,6 22,7	7 11	39,1 34,6	10 13	32,7 29,0	13 15	45,5 40,4	17 19	37,8 33,6	19 21	55,1 49,0	24 26	45,4 40,4	26 28		- 10 - 5	68,8	25 29	58,0 55,0	29 33
PWW	±	0	23,3	12	19,8	14	30,2	16	25,3	18	35,3	22	29,4	24	42,9	27	35,5	29	1,1	± 0	61,8	33	52,1	37
45/35	+	5	20,0	16	17,0	17	25,8	19	21,7	21	30,3	24	25,3	26	37,0	29	30,6	31	bar	+ 5	58,4	37	49,2	40
	+	10 15	16,7 13,4	19 22	14,2 11,5	20 23	21,5 17,3	22 25	18,1 14,6	23 26	25,4 20,5	26 28	21,2 17,2	28 30	31,1 25,3	31 32	25,8 21,0	32 33		+ 10 + 15	55,0 51,7	40 44	46,4 43,5	44 47
	+	20	10,2	26	8,7	27	13,1	28	11,1	29	15,7	30	13,2	31	19,5	33	16,3	34		+ 20	48,3	47	40,7	51
	-	15 10	37,1	4 7	31,5 28,5	6 9	48,1 43,5	10 13	40,2 36,4	12 15	55,7 50,5	17 20	46,2 41,9	20 22	67,1 60,9	25 27	55,2 50,1	28 30		- 15 - 10	77,7	24 28	65,5 62,5	28 32
	-	5	30,1	11	25,6	13	39,0	16	32,6	18	45,3	22	37,6	25	54,8	29	45,1	32		- 5	70,6	32	59,5	36
PWW	±	0	26,7	14	22,7	16	34,6	19	28,9	21	40,2	25	33,5	27	48,7	31	40,1	33	1,5	± 0	67,1	36	56,5	40
50/40	+	5 10	23,3	18 21	19,8	19 22	30,2 25,9	22 24	25,3 21,7	24 26	35,2 30,3	27 29	29,3 25,2	29 31	42,8 36,9	33 34	35,3 30,5	35 36	bar	+ 5 + 10	63,7	39 43	53,6	43 47
	+		16,7	24	17,0 14,2	26	21,6	27	18,1	29	25,4	31	21,2	33	31,0	36	25,7	37		+ 15	56,9	43 47	50,8 47,9	50
	+	20	13,5	28	11,5	29	17,4	30	14,6	31	20,6	33	17,2	35	25,3	37	21,0	39		+ 20	53,5	50	45,1	54
	-	15	38,0	4	32,4	6	49,3 44,7	10	41,3 37,5	13	57,8 52,6	18	48,2	22 24	70,5 64,2	27 29	58,3 53,2	30 32		- 15	82,9	27	69,9	31
	-	10 5	34,6	8 11	29,4 26,5	10 13	40,2	13 16	33,8	16 19	47,4	21 23	43,9 39,6	26	58,1	31	48,1	34		- 10 - 5	79,3	31 34	66,8 63,8	35 39
PWW	±	0	27,7	15	23,6	17	35,8	19	30,1	22	42,3	26	35,4	28	52,0	33	43,2	36	2,0	± 0	72,2	38	60,8	43
60/40	+	5	24,3 21,0	18 22	20,8	20 23	31,4 27,1	22 25	26,5 22,8	24 27	37,3 32,3	28 30	31,2 27,1	31 33	46,0 40,0	35 36	38,2 33,3	37 39	bar	+ 5 + 10	68,8	42 46	57,9	46 50
	+	10 15	17,7	25	18,0 15,2	26	22,8	28	19,3	30	27,4	33	23,0	34	34,1	38	28,5	40		+ 15	61,9	50	55,0 52,2	54
	+	20	14,4	28	12,4	29	18,5	31	15,7	32	22,5	35	19,0	36	28,1	39	23,6	41		+ 20	58,6	53	49,4	57
	-	15	45,0	8	38,3	10	58,3	15	48,8	18	67,9	24	56,5	28	82,2	35	67,7	38		- 15	90,7	30 34	76,3	36
	-	10	41,5 38,0	11 15	35,3 32,3	14 17	53,7 49,2	18 21	45,0 41,2	21 24	62,6 57,5	27 29	52,1 47,8	30 33	75,9 69,7	37 39	62,6 57,6	40 42		- 10 - 5	87,0 83,4	38	73,3 70,2	40 43
PWW	±	0	34,6	18	29,4	21	44,7	24	37,5	27	52,3	32	43,6	35	63,7	41	52,6	43	3,0	± 0	79,9	42	67,3	47
70/50	+	5	31,2	22	26,5	24	40,3	27	33,8	30	47,3	34	39,4	37 39	57,6	42 44	47,7	45 47	bar	+ 5	76,4	46	64,3	51
	+	10 15	27,8 24,5	25 29	23,7	27 30	35,9 31,6	30	30,2 26,6	32 35	42,3 37,3	37 39	35,3 31,2	39 41	51,7 45,8	46	42,8 38,0	47		+ 10 + 15	72,9	50 54	61,4 58,5	55 58
	+	20	21,2	32	18,1	34	27,3	36	23,0	38	32,4	41	27,2	43	39,9	47	33,2	49		+ 20	66,1	58	55,7	62
	-	15 10	51,9 48,4	11 15	44,1 41,0	14 18	67,3 62,6	19 23	56,2 52,3	23 26	77,8 72,5	30 33	64,5 60,2	34 36	93,5 87,2	41 44	76,9 71,7	45 47		- 15 - 10	101,3 97,6	36 40	85,2 82,1	42 46
	-	5	44,8	18	38,1	21	58,0	26	48,5	29	67,3	35	55,9	39	81,1	46	66,7	49		- 5	93,9	44	79,0	49
PWW	±	0	41,4	22	35,1	25	53,5	29	44,7	32	62,1	38	51,6	41	74,9	48	61,7	51	5,0	± 0	90,3	48	76,0	53
80/60	+	5 10	37,9 34,5	25 29	32,2 29,3	28 31	49,0 44,6	32 35	41,0 37,4	35 38	57,0 52,0	40 43	47,4 43,3	44 46	68,9 63,0	50 52	56,8 52,0	53 54	bar	+ 5 + 10	86,8	52 56	73,0 70,0	57 61
		15	31,2	32	26,5	35	40,2	38	33,7	41	47,0	45	39,2	48	57,1	53	47,1	56		+ 15	79,8	60	67,1	65
		20	27,8	36	23,7	38	35,9	41	30,1	43	42,1	48	35,1	50	51,3	55	42,4	58		+ 20	76,4	63	64,3	68
	-	15 10	58,8 55,1	14 18	49,8 46,7	18 22	76,0 71,3	24 27	63,4 59,5	28 31	87,5 82,2	35 38	72,4 68,0	40 43	104,5 98,2	48 50	85,7 80,6	52 54		- 15 - 10	114,6 110,9	42 47	96,3 93,2	49 53
	-	5	51,6	22	43,7	25	66,7	30	55,6	34	76,9	41	63,7	45	92,0	53	75,5	56		- 5	107,2	51	90,1	57
PWW 90/70	± +	0 5	48,1 44,6	25	40,8 37,8	29 32	62,1 57,6	34 37	51,9 48,1	37 40	71,7 66,6	44 46	59,4	48	86,1 79,9	55 57	70,6 65,6	58 60	9,0 bar	± 0 + 5	103,5	55 59	87,0 84,0	61 65
30/70		10	41,2	29 33	34,9	35	53,2		48,1	43	61,5	46	55,2 51,0	50 52	73,9	57 59	60,8	62	Dai	+ 10	96,4	63	81,0	69
		15	37,8	36	32,1	39	48,8	43	40,8	46	56,5	51	46,9	55	68,0	61	56,0	64		+ 15	92,9	67	78,0	73
Potenza e		20 orhi-	34,4	40	29,2		44,4		37,2	49	51,6	54	42,9	57	62,2	63	51,2	65		+ 20	<u> </u>	71	75,1	77
ta [kW] (3	x 400) V)	max.	0,34	max.	0,25	max.	0,34	max.	0,25	max.	0,34	max.	0,25	max.	0,34	max.	0,25			max.	0,34	max.	0,25
Corrente ta [A] (3 >			max.	0,79	max.	0,35	max.	0,79	max.	0,35	max.	0,79	max.	0,35	max.	0,79	max.	0,35			max.	0,79	max.	0,35
Lancio ap			21	6	1	8	2	4	1'	7	2	1	1	5	21	0	14	+			2	6	18	8
Lancio ap	pare	C-	7,	1	5,	3	6	.9	5,	.1	6,	.1	4,	5	5,	8	4,	4			7,	1	5,	.3
chio a sot Livello di																	•						•	
ne sonor Contenut	a dB		5	9	5	3	5	9	5	3	5	y	5	3	5	9	5	3			5	A	5	3
acqua de		am-		6	2,5			3	3,5			3	3,5			Ę	5,5							
biatore d Raccordi	i calo	re [l]																						
atore di d		е	101/	R	1"			R 1	L ¹ /4"			R 1	L ¹ /4"			R:	11/4"				D	N 50	- DN 2	5

^{*}Con t_{LA} - t_{ambiente} = 10K

**Livello di pressione sonora a una distanza di 5 m, misurato in un locale a medio assorbimento, dimensioni del locale ca. 1500 m³

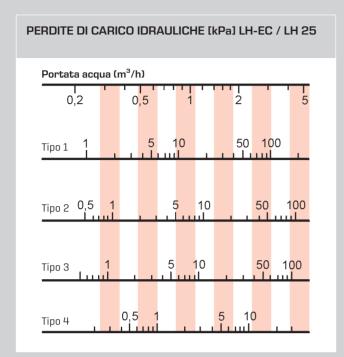
AEROTERMO LH 63 TABELLA DATI TECNICI

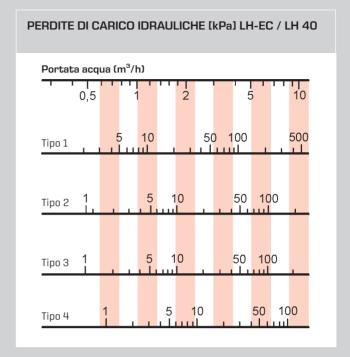
per acqua	surrisc	aldata		4				•					
Tipo Velocità [g	iri/min.]	9	00	1 70	10	90	00	2 70	00	90	; 00	3 70	00
Portata volu \mathring{V}_0 [m ³ /h]		53	300	40	00	52	00	39	00	46	00	35	00
• 0 [/]		$\mathbf{\mathring{Q}}_{0}$	t _{LA}	$\mathbf{\mathring{\varphi}}_{o}$	t _{LA}	$ ho_{\circ}$	t _{LA}	٥٥	t _{LA}	\dot{Q}_{o}	t _{LA}	$\mathbf{\mathring{\varphi}}_{o}$	t _{LA}
	t _{LE} [°C]	kW	°C	kW	°C	kW	°C	kW	°C	kW	°C	kW	°C
	- 15 - 10	72,2 68,5	21 25	61,0 57,9	25 29	93,2 88,4	33 36	77,5 73,5	38 41	106,3 100,9	46 49	87,7 83,2	51 54
	- 5	64,8	29	54,8	33	83,7	39	69,6	44	95,6	52	78,9	57
PHW	± 0	61,3	32	51,8	36	79,1	43	65,8	47	90,3	55	74,5	60
110/90	+ 5	57,7	36	48,8	40	74,5	46	62,0	50	85,1	58	70,3	62
	+ 10 + 15	54,2 50,8	40 43	45,9 43,0	43 47	69,9 65,5	49 52	58,2 54,5	53 56	80,0 75,0	61 63	66,1 61,9	65 67
	+ 20	47,3	47	40,1	50	61,0	55	50,8	59	70,0	66	57,8	70
	- 15	78,8	24	66,5	29	101,6	37	84,4	42	115,5	52	95,1	57
	- 10	75,1	28	63,4	33	96,8	40 44	80,4	46	110,0	55 E0	90,6	60
PHW	- 5 ± 0	71,4 67,8	32 36	60,3 57,3	37 40	92,0 87,4	47	76,4 72,6	49 52	104,7 99,4	58 61	86,2 81,9	63 66
120/100	+ 5	64,2	40	54,3	44	82,7	50	68,7	55	94,2	63	77,6	68
	+ 10	60,7	43	51,3	47	78,2	54	65,0	58	89,0	66	73,4	71
	+ 15 + 20	57,2	47 E1	48,4	51	73,7	57	61,2	61	84,0	69	69,2	74
	- 15	53,7 80,5	51 25	45,5 68,1	54 30	69,2 103,9	60 38	57,5 86,4	64 44	78,9 118,6	72 53	65,1 97,9	76 59
	- 10	76,8	29	65,0	34	99,1	41	82,4	47	113,2	57	93,4	62
	- 5	73,2	33	61,9	38	94,3	45	78,5	50	107,8	60	89,0	65
PHW 130/100	± 0	69,5	37	58,9	41	89,6	48	74,6	54	102,6	63	84,7	68
130/100	+ 5 + 10	66,0 62,4	41 44	55,8 52,9	45 48	85,0 80,5	52 55	70,8 67,0	57 60	97,4 92,2	65 68	80,4 76,2	71 73
	+ 15	58,9	48	49,9	52	75,9	58	63,3	63	87,1	71	72,0	76
	+ 20	55,5	52	47,0	55	71,5	61	59,6	66	82,1	74	67,9	78
	- 15	82,3	26	69,7	31	106,5	39	88,5	45	121,8	55	100,7	61
	- 10 - 5	78,6 74,9	30 34	66,6 63,5	35 39	101,4 96,6	43 46	84,5 80,5	49 52	116,4 111,0	58 61	96,2 91,8	64 67
PHW	± 0	71,3	38	60,4	42	92,0	50	76,7	55	105,7	64	87,5	70
140/100	+ 5	67,7	42	57,4	46	87,3	53	72,8	58	100,5	67	83,2	73
	+ 10	64,2	45	54,4	50	82,7	56	69,0	61	95,3	70	78,9	76
	+ 15 + 20	60,7 57,2	49 52	51,5 48,6	53 57	78,2 73,8	59 63	65,3 61,6	65 68	90,2 85,2	73 76	74,7 70,6	78 81
	- 15	87,1	29	73,6	34	112,3	42	93,2	48	127,7	59	105,2	65
	- 10	83,4	33	70,5	38	107,4	46	89,2	52	122,2	62	100,7	68
DLIM	- 5 ± 0	79,7 76,0	36 40	67,4 64,3	41 45	102,6 97,9	49 53	85,3 81,4	55 59	116,9 111,5	65 68	96,3 92,0	71 74
PHW 140/110	+ 5	76,0 72,4	44	61,3	45 49	93,3	56	77,5	62	106,3	71	92,0 87,7	77
	+ 10	68,9	48	58,3	52	88,7	60	73,7	65	101,1	74	83,4	79
	+ 15	65,4	51	55,3	56	84,1	63	70,0	68	96,0	77	79,2	82
	+ 20	61,9	55	52,4	59	79,6	66	66,2	71	91,0	80	75,1	85
Potenza el.		00 V) max. 0,34		max.	n 25	may	0,34	may	0,25	may	0,34	may	0,25
ta [kW] (3 x Corrente a			·		•				•		•		
ta [A] (3 x	400 V)	max	. 0,79	max.	0,35	max.	0,79	max.	0,35	max.	0,79	max.	0,35
	(3 x 400 v)			1	8	2	:4	1	.7	2	1	1	5
Lancio app	a parete [m]* io apparec- a soffitto [m]* lo di pressio-			5,	3	6	,9	5	,1	6	,1	4	,5
Livello di p	io apparec- a soffitto [m]* lo di pressio- pora dB [A]** enuto di			5			9		3	5			3
Contenuto	di i								-				
acqua dell biatore di d	calore [l]		2	2,5			3	3,5				,5	
Raccordi s atore di ca			R	1"			R	11/4"			R 1	L ¹ /4"	

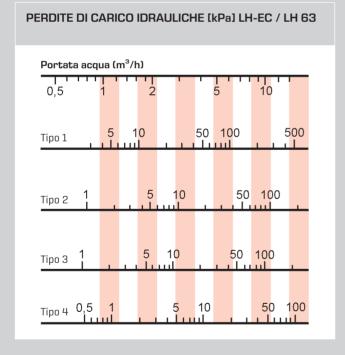
AEROTERMO LH 100

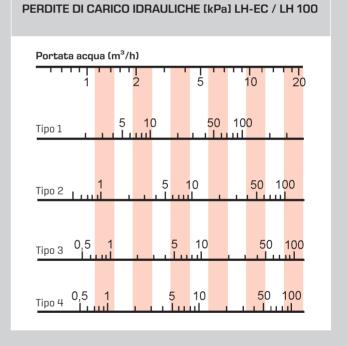
TABELLA DATI TECNICI

per acqua	a calda																	per va	pore sa	aturo			
Tipo	r / 1			1		1 00		2		1 00		3		1 00		4				1 00		D	20
Velocità [Portata vo	-			70 67		90		70 650		90		70 60		90		70 560				90		70 670	
V₀ [m³/h]		٥٥	t _{LA}	$\mathbf{\dot{Q}}_{0}$	t _{LA}	O	t _{LA}	$\mathbf{\dot{Q}}_{0}$	t _{LA}	\dot{Q}_{o}	t _{LA}	$\mathbf{\mathring{Q}}_{0}$	t _{LA}	\dot{Q}_{o}	t _{LA}	$\mathbf{\mathring{Q}}_{0}$	t _{LA}			.	t _{LA}	٥٥	t _{LA}
	t _{LE} [°C]	kW	°C	kW	°C	kW	°C	kW	°C	kW	°C	kW	°C	kW	°C	kW	°C		t _{LE} [°C]	kW	°C	kW	°C
	- 15	57,1	2	48,1	4 7	72,8	7	60,4	10	93,9	15	75,1	18	107,5	22	84,5	25		- 15	121,8	21	101,8	25
	- 10 - 5	51,2 45,3	5 9	43,1 38,2	11	65,2 57,7	10 13	54,1 47,9	12 15	84,3 74,8	17 20	67,5 60,0	20 23	96,8 86,1	24 26	76,1 67,9	27 28		- 10 - 5	115,8 109,9	25 29	96,8 91,9	29 33
PWW	± 0	39,6	12	33,4	14	50,3	16	41,8	18	65,5	22	52,5	25	75,7	28	59,7	30	1,1	± 0	104,1	33	87,0	36
45/35	+ 5	33,9	16	28,6	17	43,0	19	35,7	21	56,3	24	45,2	27	65,4	29	51,7	31	bar	+ 5	98,4	36	82,2	40
	+ 10	28,3	19	23,9	20	35,7	22	29,8	23	47,2	27	38,0	28	55,1	31	43,7	33		+ 10	92,7	40	77,5	44
	+ 15	22,8	22	19,3	24	28,6	25	23,9	26	38,2	29	30,9	30	45,0	32	35,8	34		+ 15	87,1	44	72,8	47
	+ 20	17,3 62,9	26 4	14,7 53,0	27 6	21,6 80,4	27 9	18,1 66,5	28 12	29,3 103,1	31 18	23,8	32 21	35,0 117,5	34 25	27,9 92,2	35 29		+ 20	81,5 130,8	47 24	68,1 109,3	51 28
	- 10	57,0	7	48,0	9	72,7	12	60,2	15	93,4	20	74,7	24	106,7	27	83,8	30			124,8	28	104,3	32
	- 5	51,1	11	43,0	13	65,1	15	54,0	18	83,9	23	67,1	26	96,1	29	75,5	32		- 5	118,9	31	99,3	36
PWW	± 0	45,3	14	38,2	16	57,7	18	47,8	21	74,6	25	59,7	28	85,6	31	67,4	34	1,5	± 0		35	94,4	40
50/40	+ 5	39,6	18	33,4	19	50,3	21	41,8	23	65,3	27	52,3	30	75,2	33	59,3	35	bar	+ 5	107,2	39	89,6	43
	+ 10 + 15	33,9 28,4	21 24	28,7 24,0	22 26	43,0 35,9	24 27	35,8 29,9	26 29	56,2 47,2	30 32	45,1 37,9	32 34	65,0 54,9	35 36	51,3 43,5	37 38		+ 10 + 15	101,5 95,9	43 47	84,8 80,1	47 50
	+ 20	22,9	28	19,4	29	28,8	30	24,0	31	38,2	34	30,9	35	44,9	38	35,7	39		+ 20	90,3	50	75,4	54
	- 15	64,6	4	54,5	7	81,9	10	68,2	13	107,3	19	86,2	23	124,4	28	98,3	32		- 15	139,6	26	116,6	31
	- 10	58,6	8	49,5	10	74,3	13	61,9	16	97,6	22	78,5	25	113,6	30	89,8	33			133,6	30	111,6	35
DIAGA	- 5	52,8	11	44,6	13	66,8	16	55,7	19	88,1	24	70,9	28	102,9	32	81,5	35	0.0	- 5	127,6	34	106,6	39
PWW 60/40	± 0 + 5	47,0 41,3	15 18	39,8 35,0	17 20	59,3 52,0	19 22	49,5 43,5	21 24	78,7 69,4	27 29	63,5 56,1	30 32	92,3 81,9	34 35	73,2 65,1	37 38	2,0 bar	± 0 + 5	121,7 115,8	38 42	101,6 96,8	43 46
00/ 10	+ 10	35,6	22	30,2	23	44,7	25	37,5	27	60,2	31	48,7	34	71,5	37	57,0	40	Dui	+ 10	110,1	46	92,0	50
	+ 15	30,1	25	25,5	26	37,5	28	31,5	29	51,1	33	41,5	35	61,2	39	48,9	41		+ 15	1	49	87,2	54
	+ 20	24,5	28	20,9	29	30,4	30	25,6	32	42,0	35	34,2	37	50,9	40	40,8	42		+ 20	98,8	53	82,5	57
	- 15	76,5	8	64,4	10	97,3	14	80,7	18	125,9	25	100,8	30	144,5	35	113,7	39		- 15	152,7	30	127,5	35
	- 10 - 5	70,5	11 15	59,4 54,4	14 17	89,5 81,9	18 21	74,3 68,1	21 24	116,2 106,6	28 30	93,0 85,4	32 34	133,6 122,9	37 39	105,2 96,9	41 43		- 10 - 5	146,6 140,5	34 38	122,4 117,3	39 43
PWW	± 0	58,7	18	49,5	21	74,4	24	61,9	27	97,1	33	77,9	36	112,3	41	88,6	44	3,0	+ 0	134,6	42	112,4	47
70/50	+ 5	52,9	22	44,7	24	67,0	27	55,7	30	87,8	35	70,5	39	101,9	43	80,5	46	bar	+ 5	128,7	46	107,5	51
	+ 10	47,2	25	39,9	27	59,6	30	49,7	32	78,5	38	63,2	41	91,5	45	72,4	48		+ 10	122,9	50	102,6	55
	+ 15	41,5	29	35,2	31	52,4	33	43,7	35	69,4	40	55,9	43	81,3	46	64,5	49			117,2	54	97,8	58
	+ 20	35,9 88,2	32 11	30,5 74,2	34 14	45,2 112,3	35 19	37,8 93,0	37 23	60,3 144,0	42 31	48,7 114,9	36	71,1 164,0	48	56,6 128,6	50 46		+ 20	111,5 170,5	57 35	93,1 142,3	62 41
	- 10	82,1	15	69,1	18	104,5	22	86,6	26	134,3	34	107,2	38	153,0	44	120,1	48		- 10	164,3	39	137,1	45
	- 5	76,1	18	64,1	21	96,8	25	80,2	29	124,6	36	99,6	41	142,3	46	111,8	50			158,2	43	132,0	
PWW	± 0	70,2		59,1	25	89,2	28	74,0	32	115,1		92,0	43	131,7	48	103,5		5,0		152,2		127,0	
80/60	+ 5	64,4	25	54,2	28	81,7	32	67,8	35	105,7		84,6	45	121,3	50	95,4	54	bar	+ 5	146,2	51	122,0	
	+ 10 + 15	i		49,4 44,6	31 35	74,3 67,0	35 38	61,7 55,7	38 40	96,4 87,2	44 46	77,2 70,0		110,9 100.7	52 54	87,4 79,4	55 57		+ 10 + 15		55 59	117,1 112,3	61 65
	+ 20	47,2		39,9		59,7	40	49,7	43	78,2	48	62,8	51	90,6	55	71,6	58			,		107,5	
	- 15	99,7		83,8	18	127,1		105,0	28	161,8	37	128,8		182,9	48	143,0				193,1		161,0	
	- 10	'		78,7	22	119,3		98,6		152,0		121,0		172,0	50	134,5				186,8		155,7	
PWW	- 5	87,6		73,6	25	111,5		92,2		142,2		113,3		161,2		126,2		0.0		180,6		150,6	
90/70	± 0 + 5	81,6 75,7	25 29	68,6 63,7	29 32	103,8 96,2	33 36	85,8 79,6		132,7 123,2		105,8 98,3	49 52	150,6 140,1	55 57	118,0 109,8		9,0 bar	± 0 + 5	174,5 168,5		145,5 140,4	
	+ 10	69,8	33	58,3	36	88,7	39	73,5	43	113,9		90,9		129,7	59	101,8				162,5		135,4	
	+ 15	64,1	36	54,0	39	81,3	42	67,4	46	104,7	52	83,6	56	119,5	61	93,9	65		+ 15	156,6	67	130,5	73
Dotonzo	+ 20	58,4	40	49,2	42	74,0	45	61,4	48	95,6	55	76,4	58	109,4	63	86,0	66		+ 20	150,8	70	125,7	76
Potenza e ta [kW] (3 Corrente	x 400 V)	max.	0,75	max.	0,50	max.	0,75	max.	0,50	max.	0,75	max.	0,50	max.	0,75	max.	0,50			max.	0,75	max.	0,50
ta [A] (3 x	(400 V)	max	. 1,6	max.	0,85	max	. 1,6	max.	0,85	max	1,6	max.	0,85	max	1,6	max.	0,85			max.	1,6	max.	0,55
Lancio ap	rete [m]*	3	0	2	3	3	0	2:	2	28	8	2	0	21	6	20	0			30	D	2	3
Lancio ap	parec- ffitto [m]*	7	7	5,	6	7,	6	5,	5	7,	1	5,	0	6,	6	4,	6			7,	7	5,	6
Livello di ne sonora	pressio- a dB [A]**	₆	4	5	8	6	4	5	8	64	4	5	8	64	4	58	8			6 ^t	4	5	8
Contenut acqua de	llo scam-		3	3,5			5	,5			7	7,5			ç	9,5							
biatore di Raccordi atore di c	i scambi-		R	1"			R 1	L ¹ /2"			R I	1½"			R	1½"				DI	N 65	- DN 3	2
* Con t		10V																					

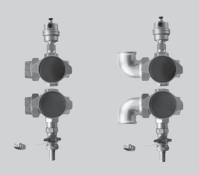

^{*} Con t_{LA} - t_{ambiente} = 10K


**Livello di pressione sonora a una distanza di 5 m, misurato in un locale a medio assorbimento, dimensioni del locale ca. 1500 m³


AEROTERMO LH 100 TABELLA DATI TECNICI


per acqua	surrisc	aldata											
Tipo Velocità (g	niri/min l	9	00	1 70	าก	90		2 70	n	91	; 00	3 70	ın
Portata vol			000	67		88		650		83		60	
\mathring{V}_0 [m ³ /h]													
	t _{LE} [°C]	Ů₀ kW	t _{∟A} °C	Ů₀ kW	t _{∟A} °C	Ů₀ kW	t _{∟A} °C	Ů₀ kW	t _{∟∧} °C	, φ _o kW	t _{∟A} °C	Ο̈́ο kW	t _{∟A} °C
	- 15	122,5	21	102,7	26	156,1	32	128,5	37	196,3	48	155,6	54
	- 10 - 5	116,3 110,1	25 29	97,5 92,3	29 33	148,1 140,1	35 39	122,0 115,5	41 44	186,3 176,5	51 54	147,7 140,0	57 59
PHW	± 0	104,0	32	87,2	37	132,3	42	109,1	47	166,8	56	132,4	62
110/90	+ 5	98,0	36	82,2	40	124,6	45	102,7	50	157,3	59	124,8	54
	+ 10 + 15	92,0 86,2	40 43	77,2 72,3	44 47	117,0 109,5	49 52	96,5 90,3	53 56	147,8 138,5	62 64	117,4 110,1	67 69
	+ 20	80,4	47	67,5	50	102,1	55	84,2	59	129,3	67	102,8	72
	- 15	133,7	24	112,0	29	170,3	36 40	140,1	42	213,1	53 E6	168,6	59 62
	- 10 - 5	127,4 121,2	28 32	106,8 101,6	33 37	162,2 154,2	40	133,4 126,9	45 49	203,1 193,2	56 59	160,7 152,9	65
PHW	± 0	115,1	36	96,4	40	146,3	47	120,4	52	183,5	62	145,3	68
120/100	+ 5 + 10	109,0 103,0	40 43	91,4 86,4	44 47	138,6 130,9	50 53	114,1 107,8	55 58	173,8 164,4	65 68	137,7 130,2	71 73
	+ 15	97,1	47	81,4	51	123,3	56	107,8	61	155,0	70	122,9	76
	+ 20	91,2	50	76,5	54	115,8	60	95,4	64	145,8	73	115,6	78
	- 15 - 10	136,7 130,4	25 29	114,7 109,4	30 34	173,9 165,8	37 41	143,3 136,6	43 47	219,2 209,1	55 58	173,8 165,9	62 65
	- 5	124,2	33	104,2	38	157,8	44	130,0	50	199,3	61	158,1	68
PHW	± 0	118,0	37	99,1	41	149,9	48	123,7	53	189,6	64	150,5	70
130/100	+ 5 + 10	112,0 106,0	41 44	94,0 89,0	45 49	142,2 134,5	51 54	117,3 111,0	57 60	180,0 170,4	67 70	142,9 135,4	73 76
	+ 15	100,0	48	84,0	52	126,9	58	104,8	63	161,0	72	128,0	78
	+ 20	94,2	51	79,1	56	119,4	61	98,6	66	151,8	75	120,7	81
	- 15 - 10	139,8 133,5	26 30	117,4 112,1	31 35	177,6 169,5	38 42	146,6 139,9	45 48	225,2 215,3	57 60	178,9 171,0	64 67
	- 5	127,2	34	106,9	39	161,5	46	133,4	52	205,3	63	163,3	70
PHW	± 0	121,1	38	101,7	43	153,6	49	126,9	55	195,5	66	155,6	73
140/100	+ 5 + 10	115,0 109,0	41 45	96,7 91,6	46 50	145,8 138,1	52 56	120,5 114,2	58 61	185,9 176,4	69 72	148,0 140,5	75 78
	+ 15	103,0	49	86,7	53	130,5	59	108,0	64	167,0	75	133,1	81
	+ 20	97,2	52	81,8	57	123,0	62	101,8	67	157,7	77	125,7	83
	- 15 - 10	147,9 141,5	29 33	124,0 118,6	34 38	188,0 179,8	42 45	154,7 148,0	48 52	235,9 225,7	60 63	186,6 178,7	67 70
	- 5	135,3	36	113,4	42	171,8	49	141,4	55	215,8	67	170,9	73
PHW 140/110	± 0	129,1	40	108,2	45	163,9	52	134,9	58	206,0	70	163,2	76
140/110	+ 5 + 10	123,0 116,9	44 48	103,1 98,1	49 53	156,1 148,3	56 59	128,5 122,2	61 65	196,3 186,8	73 75	155,6 148,1	79 82
	+ 15	110,9	51	93,1	56	140,7	62	116,0	68	177,4	78	140,7	84
	+ 20	105,0	55	88,1	60	133,2	66	109,8	71	168,1	81	133,4	87
ta [kW] (3 x	nza el. assorbi- v] (3 x 400 V) ente assorbi-] (3 x 400 V) max. 0,			max.	0,50	max.	0,75	max.	0,50	max.	0,75	max.	0,50
ta [A] (3 x	400 V)	max.	0,1,6	max.	0,55	max	. 1,6	max.	0,55	max	. 1,6	max	. 0,5
Lancio ap		3	30	2	3	3	0	22	2	2	8	2	0
Lancio app	parec-	7	7,7	5,	,6	7,	6	5,0	6	7	,1	5,	0
chio a sof Livello di ne sonora	pressio-		64	5		6		58			4	5	
Contenuto acqua del	o di Io scam-		3	,5			5	i,5			7	,5	
biatore di Raccordi atore di c	scambi-		R	1"			R:	1½"			R 1	L ¹ /2"	
acoro ur o													

AEROTERMO LH-EC / LH RESISTENZE DELL'ACQUA



AEROTERMO LH-EC / LH SET DI INTERCETTAZIONE

SET DI INTERCETTAZIONE PER SCAMBIATORE DI CALORE

Set di intercettazione diritto o ad angolo per mandata e ritorno dello scambiatore di calore per LH-EC / LH 25 tipo 2/3/4, LH-EC / LH 40: tipo 2/3/4, LH-EC / LH 63: tipo 1, LH-EC / LH 100: tipo 1 adatto per temperature dell'acqua di riscaldamento fino a max. 110 °C e una pressione di esercizio fino a max. 10 bar

Raccordo filettato da 1" per collegamento alla mandata e al ritorno con guarnizione piatta Valvola di sfiato automatica (sfiato rapido) con valvola di intercettazione automatica Rubinetto di riempimento e scarico con tappo e collegamento a tubo flessibile Rubinetti a sfera con filettatura interna da 1" nella mandata e nel ritorno Possibilità di collegamento con filettatura esterna da ¾" (ad es. per termometro) nella mandata e nel ritorno

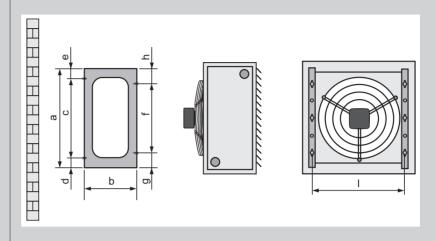
VALVOLA DI COMPENSAZIONE IDRAULICA

DN 20	4 - 15	I/min
DN 20	8 - 30	l/min
DN 25	6 - 20	I/min
DN 25	10 - 40	I/min
DN 32	20 - 70	I/min
DN 40	30 - 120	l/min

SET FLANGE

composto da 2 flange e controflange, 2 flange come flange presaldate, 2 guarnizioni piatte e viti a testa esagonale e dadi esagonali

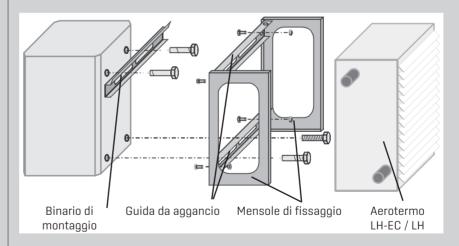
DN 20	R 3/4"	LH-EC/LH 25, 40	Tipo 1
		LH 25-ATEX	Tipo 1
DN 25	R 1"	LH-EC/LH 25, 40	Tipo 2/3/4
		LH 25/40-ATEX	Tipo 2/3/4
		LH-EC/LH 63,100	Tipo 1
		LH 63/100-ATEX	Tipo 1
DN 32	R 1½"	LH-EC/LH 63	Tipo 2/3/4
		LH 63-ATEX	Tipo 2/3/4
DN 40	R 1½"	LH-EC/LH 100	Tipo 2/3/4
		LH 100-ATEX	Tipo 2/3/4


AEROTERMO LH-EC / LH

ACCESSORI DI FISSAGGIO

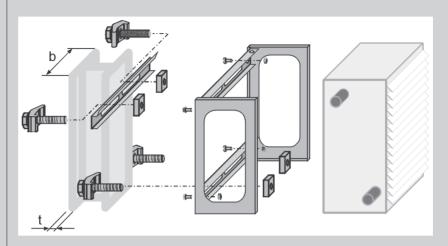
MENSOLE DI FISSAGGIO

Per montaggio a parete e a soffitto in lamiera di acciaio piegata 2 mm, zincata. Kit di montaggio completo.


Composto da: 2 mensole, viti a testa esagonale per montaggio sull'apparecchio LH-EC / LH

Misure	а	b	С	d	е	di	g	h	i
25	480	250	380	70	30	170	155	155	434
40	480	250	2x170	90	50	2x170	70	70	564
63	784	350	170+340+170	72	32	3x170	137	137	734
100	784	350	170+340+170	72	32	3x170	137	137	894

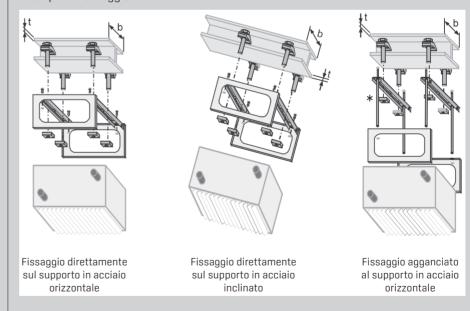
KIT DI FISSAGGIO PER SUPPORTO IN CALCESTRUZZO VERTICALE


Per il fissaggio dell'aerotermo LH-EC / LH a un supporto in calcestruzzo tramite aggancio in binari di montaggio premontati. Tasselli e viti a cura del committente. Composto da: binario di montaggio, 2 guide di supporto (lamiera di acciaio zincata), viti e dadi.

Misure	а	b	С	d	е	di	g	h	i
25	480	250	380	70	30	170	155	155	434
40	480	250	2x170	90	50	2x170	70	70	564
63	784	350	170+340+170	72	32	3x170	137	137	734
100	784	350	170+340+170	72	32	3x170	137	137	894

KIT DI FISSAGGIO PER SUPPORTO IN ACCIAIO VERTICALE

Per il fissaggio a un supporto in acciaio, tramite aggancio in binario di montaggio premontato per mezzo di ganasce. Adatto per tutti i supporti in acciaio con una larghezza della flangia "b" da 100 mm a 300 mm e uno spessore della flangia "t" da 6 mm a 21 mm. Composto da: binario di montaggio, 2 guide di supporto (lamiera di acciaio zincata), 4 staffe di serraggio, viti e dadi.



Misure 25 40	а	t
	100-300	6-21
40	100-300	6-21

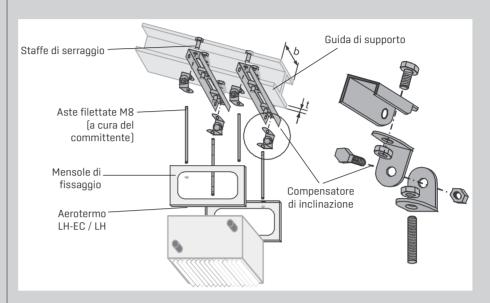
KIT DI FISSAGGIO PER SUPPORTO IN ACCIAIO ORIZZONTALE E INCLINATO SENZA COMPENSATORE DI INCLINAZIONE

Per il fissaggio a un supporto in acciaio orizzontale o inclinato con una larghezza della flangia "b" da 100 mm a 300 mm e uno spessore della flangia "t" da 6 mm a 21 mm. Composto da: 2 guide di supporto (lamiera di acciaio zincata), 4 staffe di serraggio, viti e dadi. * Aste filettate M8 a cura del committente.

Esempi di montaggio:

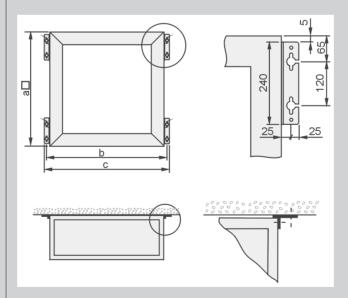
Misure	а	t
25	100-300	6-21
40	100-300	6-21

ATTENZIONE:


Prima di utilizzare il kit di fissaggio, verificare ed attenersi alle norme statiche relative ai pilastri in calcestruzzo o ai supporti in acciaio presenti sul posto. Montaggio esclusivamente nel caso di apparecchi base con una profondità totale di 300 mm.

AEROTERMO LH-EC / LH ACCESSORI DI FISSAGGIO

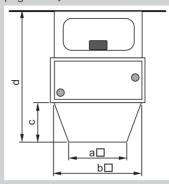
KIT DI FISSAGGIO PER SUPPORTI IN ACCIAIO INCLINATI CON COMPENSATORE DI INCLINAZIONE


Per il fissaggio a un supporto in acciaio con una larghezza della flangia "b" da 100 mm a 300 mm e uno spessore della flangia "t" da 6 mm a 21 mm. Composto da: 2 guide di supporto (lamiera di acciaio zincata), 4 staffe di serraggio, 4 compensatori di inclinazione, viti e dadi.

Misure	b	t
25	100-300	6-21
40	100-300	6-21

STAFFA ANGOLARE

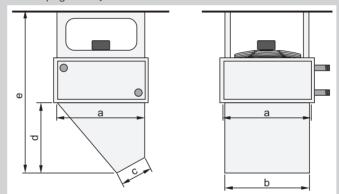
Per il montaggio a parete e a soffitto dell'aerotermo LH-EC / LH con cassetta montata per aria miscelata, aria ricircolata, aria esterna o filtro, zincata. Per il fissaggio sono necessarie 4 staffe angolari allegate al rispettivo accessorio di aspirazione. [Guarnizione verso la parete/soffitto a cura del committente]



Misure	а	b	С
25	500	550	600
40	630	680	730
63	800	850	900
100	1000	1050	1100

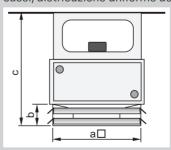
AEROTERMO LH-EC / LH ACCESSORI PER L'ESPULSIONE

CONO DI ESPULSIONE


In caso di altezza di montaggio elevata per aumentare il lancio. (Per i lanci vedere pagina 52)

Misure	а	b	С	d
25	280	460	200	750
40	370	590	240	790
63	430	760	270	920
100	530	920	320	1010

UGELLO DI ESPULSIONE


Per lanci maggiori, adatto come lama d'aria sulle porte. Temperatura di espulsione per lama d'aria ca. 10-15 °C al di sopra della temperatura ambiente. [Per i lanci vedere pagina 52]

Misure	а	b	С	d	е
25	460	420	190	390	940
40	590	550	250	480	1030
63	760	720	260	585	1235
100	920	880	320	685	1375

ESPULSIONE SU QUATTRO LATI

Con alette deflettrici regolabili, adatta per il riscaldamento di locali con soffitti bassi, distribuzione uniforme dell'aria verso tutti e quattro i lati.

Misure	а	b	С
25	500	155	705
40	630	155	705
63	800	155	805
100	1000	155	845

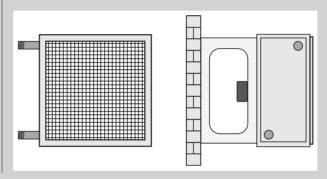
AEROTERMO LH-EC / LH ACCESSORI PER L'ESPULSIONE


CROCE DI ESPULSIONE

Miglioramento della circolazione nel locale e della distribuzione della temperatura grazie all'intensa miscelazione del getto di aria calda con l'aria ambiente.

La temperatura ridotta del getto di aria calda provoca un aumento del lancio.

Riduzione della temperatura dell'aria nella zona del soffitto, quindi perdite di calore per ventilazione e trasmissione ridotte - risparmio energetico fino al 15%.


(Per i lanci vedere pagina 52)

SCARICO LARGO

Per una maggiore propagazione laterale del getto di aria calda.

Cono del getto d'aria fino a ca. 120°; alette regolabili singolarmente in direzione orizzontale e verticale.

SERRANDA DI INDUZIONE

APPARECCHIO A PARETE DESCRIZIONE DEL FUNZIONAMENTO

temperatura

La serranda di induzione divide il getto di aria calda in uscita dall'aerotermo in flussi parziali e, nel lato sottovento delle alette, aspira l'aria secondaria (aria ambiente) direttamente nel centro del getto di aria calda.

Attraverso l'aria secondaria aspirata si ottiene un'intensa miscelazione dell'aria calda con l'aria ambiente in percorsi molto brevi e quindi una riduzione della temperatura del getto di aria calda.

Serranda di induzione per l'ottimizzazione del lancio e della distribuzione della

Questa riduzione di temperatura riduce la spinta del getto di aria calda e aumenta quindi l'ampiezza del lancio, in particolare in presenza di temperature di uscita dell'aria più elevate.

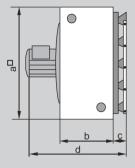
La serranda di induzione (e quindi anche la direzione del getto di aria calda) è regolabile e può essere adattata a tutte le condizioni di esercizio e condizioni locali mediante regolazione manuale o a motore.

APPARECCHIO A SOFFITTO

RISPARMIO ENERGETICO

Vengono evitate elevate temperature nella zona del soffitto e quindi la formazione di perdite di calore per ventilazione e trasmissione. È possibile ottenere risparmi energetici fino al 15%.

POSSIBILITÀ DI RETROFITTING DEGLI IMPIANTI ESISTENTI.

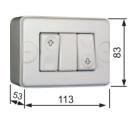

Grazie al semplice montaggio, la serranda di induzione può essere facilmente installata negli impianti esistenti in un secondo tempo.

DOTAZIONE

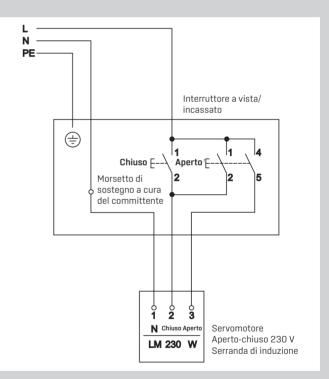
Serranda di induzione montata sull'apparecchio, con servomotore 230 V / 50 Hz per il comando tramite tasti.

Alternativa: serranda di induzione con cono di aria secondaria regolabile manualmente.

AEROTERMO LH-EC / LH ACCESSORI PER L'ESPULSIONE


DIMENSIONI APPARECCHIO BASE CON SERRANDA DI INDUZIONE LH-EC / LH 25-100 $\,$

Misura		25	40	63	100
а	mm	500	630	800	1000
b	mm	300	300	300	340
С	mm	120	120	120	120
С	mm	530	535	540	605


TASTO PER ATTUATORE 230 V / 50 HZ SERRANDA DI INDUZIONE CON CONO ARIA SECONDARIA

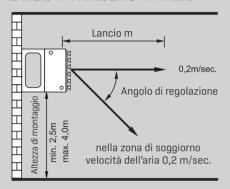
per montaggio a vista/a incasso;

per la regolazione continua della serranda di induzione per l'ottimizzazione del lancio.

Tensione di esercizio	230 V
Corrente max.	10 A
Grado di protezione	IP 20

AEROTERMO LH-EC / LH

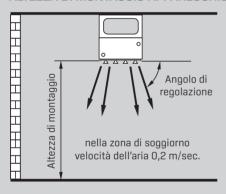
SERRANDA DI INDUZIONE AVVERTENZE PER LA PROGETTAZIONE


DISTANZE DI MONTAGGIO

Distanza di montaggio apparecchio a parete e distanza di montaggio apparecchio a soffitto alette verticali

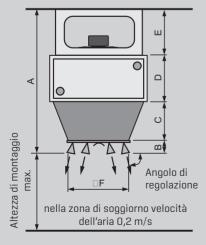
Apparecchio a soffitto alette inclinate lateralmente

Misura	25	40	63	100
Apparecchio a parete:				
da LH-EC / LH a LH-EC / LH	7-9 m	9-11 m	11-13 m	13-15 m
da LH-EC / LH alla parete laterale	3-4 m	3-5 m	4-6 m	5-7 m
Apparecchio a soffitto:				
da LH-EC / LH a LH-EC / LH	-12 m	-14 m	-16 m	-18 m
da LH-EC / LH alla parete laterale	4-6 m	5-7 m	6-8 m	7-9 m


LANCIO APPARECCHIO A PARETE

Misura		25			40			63			100					
Tipo	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
Lancio [m]*																
alta velocità	19	18	16	15	27	26	23	21	29	27	25	23	36	35	34	32
bassa velocità	16	15	13	12	20	19	16	14	22	20	18	17	30	28	26	25

* I valori sono ampiezze di lancio in presenza di condizioni di esercizio definite (Temperatura di miscelazione di 10 K al di sopra della temperatura ambiente)


ALTEZZA DI MONTAGGIO APPARECCHIO A SOFFITTO

Altezza di montaggio necessaria (m) * LH-EC / LH Tipo		25			40			63				100				
		2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
ΔT=20K; alette inclinate	5	4,5	4	3,5	6	5,5	5	4,5	7	6,5	6	5,5	8	7,5	7	6,5
ΔT=20K; alette verticali	6	5,5	5	4,5	7	6,5	6	5,5	8	7,5	7	6,5	9	8,5	8	7,5
ΔT =10K; alette inclinate	6	5,5	5	4,5	7	6,5	6	5,5	8	7,5	7	6,5	9	8,5	8	7,5
ΔT=10K; alette verticali	7	6,5	6	5,5	8	7,5	7	6,5	9	8,5	8	7,5	10	9,5	9	8,5

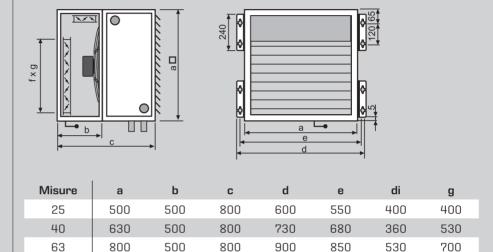
- L'angolo di regolazione ottimale delle alette dipende dalle condizioni locali, cioè geometria del locale, arredo, stratificazione di temperatura e correnti d'aria. Per questo motivo i dati possono avere solo valore indicativo
- $\Delta T =$ Temperatura dell'aria a valle dello scambiatore di calore temperatura dell'aria a monte dello scambiatore di calore

ALTEZZA DI MONTAGGIO APPARECCHIO A SOFFITTO con cono adattatore e serranda di induzione

	Α	В	С	D	E	F
LH-EC / LH 63	1040	120	270	300	350	460
LH-EC / LH 100	1130	120	320	340	350	590

Altezza di montaggio max. (m) *	LH-EC / LH	63		100		
	Tipo	1	2	1	2	
Portata volumetrica	$[m^3/h]$	3300	3200	5600	5500	
ΔT=10K; alette inclinate		12	11	11	10	
ΔT=10K; alette verticali		13,5	12,5	12,5	11,5	

- * L'angolo di regolazione ottimale delle alette dipende dalle condizioni locali, cioè geometria del locale, arredo, stratificazione di temperatura e correnti d'aria. Per questo motivo i dati possono avere solo valore indicativo
- ΔT = Temperatura dell'aria a valle dello scambiatore di calore temperatura dell'aria a monte dello scambiatore di calore


Altezze di montaggio maggiori su richiesta

AEROTERMO LH-EC / LH ACCESSORI DI ASPIRAZIONE

[In caso di esercizio con aria esterna/aria miscelata, gli aerotermi ricadono nel campo di applicazione del regolamento UE 1253/2014. In Germania devono inoltre essere rispettati i requisiti secondo VDI6022]

CASSETTA ARIA MISCELATA

Cassetta aria miscelata zincata. Per l'adattamento individuale dell'indice di ricambio d'aria. Aspirazione aria esterna sul retro, aspirazione aria ricircolata laterale o, in caso di rotazione della cassetta dell'aria miscelata di 90°, dall'alto o dal basso. Regolazione continua tra esercizio con aria ricircolata, esercizio con aria miscelata ed esercizio con aria esterna manualmente o con servomotore 230 V.

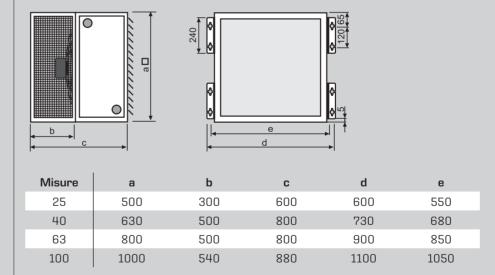
CASSETTA ARIA RICIRCOLATA

Cassetta aria ricircolata zincata, per aspirazione aria ricircolata attraverso due griglie laterali o, in caso di rotazione di 90°, aspirazione dall'alto e dal basso.

880

1100

1050

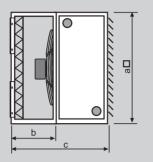

690

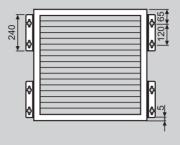
860

100

1000

540

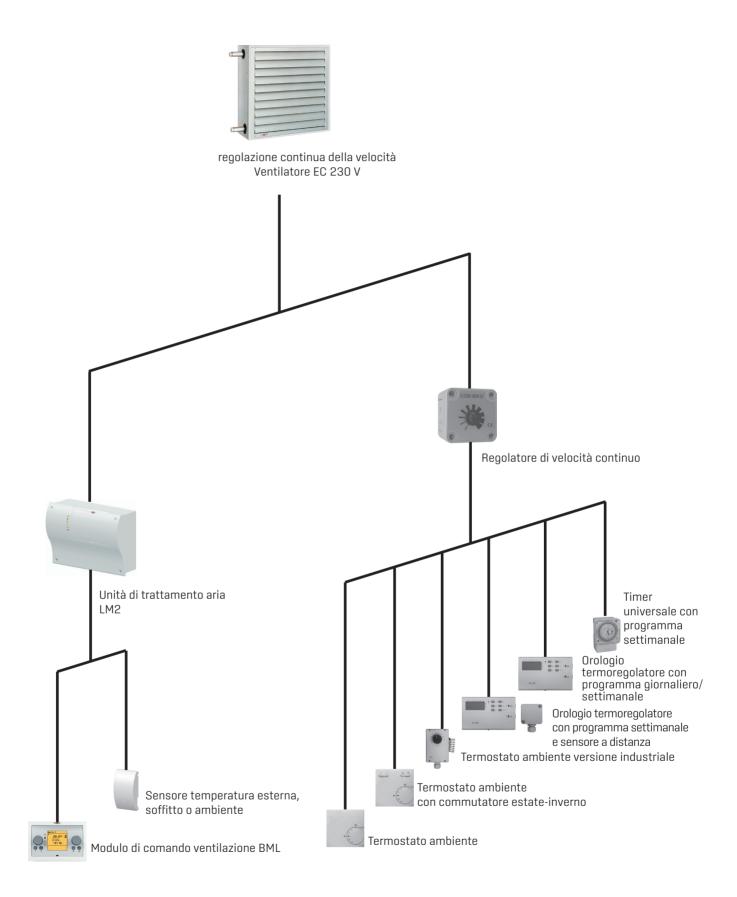


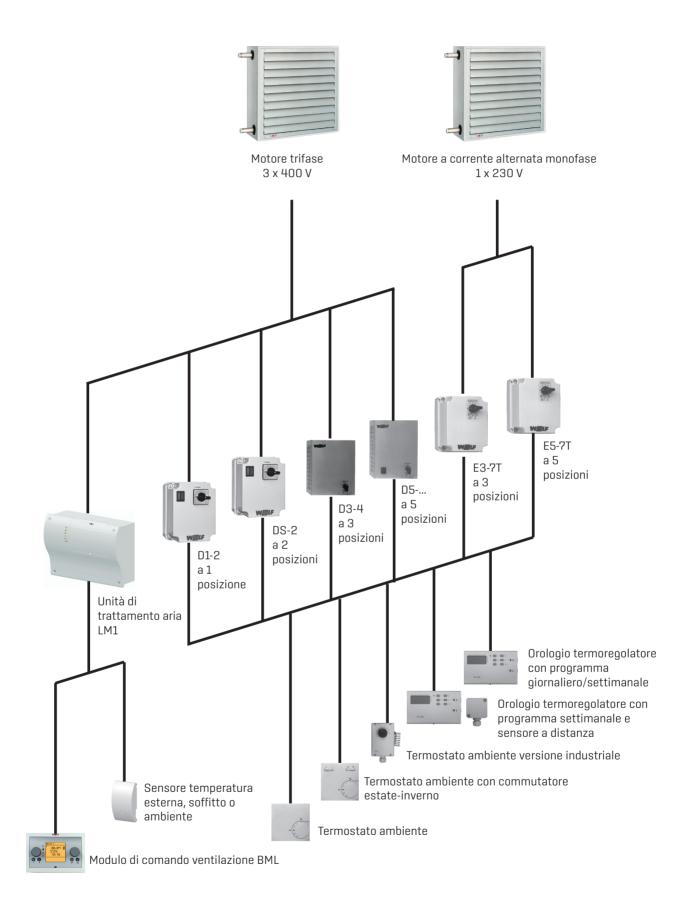

AEROTERMO LH-EC / LH

ACCESSORI DI ASPIRAZIONE

CASSETTA FILTRO

Cassetta filtro zincata. Con elemento filtrante per separazione della polvere in caso di esercizio con aria esterna o aria miscelata, classe filtro ISO Coarse 45% [G4]. Staffa angolare su richiesta.

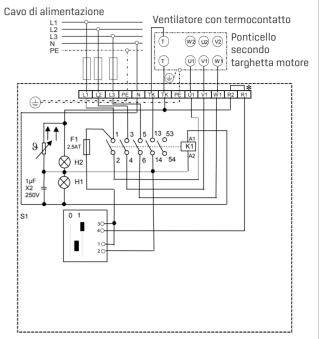

Misure	а	b	С
25	500	500	800
40	630	500	800
63	800	500	800
100	1000	540	880


GIUNTO ANTIVIBRANTE IN TELA OLONA

Giunto antivibrante in tela Olona, telaio profilato con 4 fori. Lamiera di acciaio zincato.

AEROTERMO LH-ECDISPOSITIVI DI COMANDO E REGOLAZIONE

AEROTERMO LH DISPOSITIVI DI COMANDO


INTERRUTTORE A 1 POSIZIONE D1-2

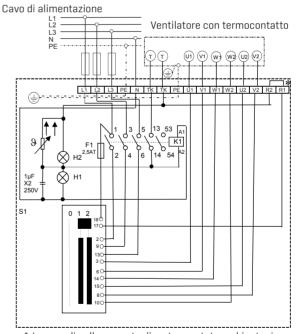
per funzionamento a 1 velocità di uno o più aerotermi con protezione totale del motore e blocco contro la riattivazione accidentale.

Tensione di esercizio	400 V
Tensione di comando	230 V
Corrente max.	8 A
Peso	0,9 kg
Grado di protezione	IP 54

Spegnimento con blocco in caso di sovratemperatura degli avvolgimenti (motore). Riattivazione: interruttore rotativo in posizione O, quindi impostare la velocità desiderata.

- * In caso di collegamento di un termostato ambiente rimuovere il ponticello.
- H1 Esercizio (verde),H2 -Guasto (rosso)
- S1/K1 Assegnazione contatti in base alla marca
 - T- TB/TW Termocontatto

Contatto K1 53-54 fabbisogno riscaldamento


INTERRUTTORE A 2 POSIZIONI DS-2

per funzionamento a 2 velocità di uno o più aerotermi con protezione totale del motore e blocco contro la riattivazione accidentale.

Tensione di esercizio	400 V	
Tensione di comando	230 V	
Corrente max.	8 A	
Peso	0,9 kg	
Grado di protezione	IP 54	

Spegnimento con blocco in caso di sovratemperatura degli avvolgimenti (motore). Riattivazione: interruttore rotativo in posizione O, quindi impostare la velocità desiderata.

- * In caso di collegamento di un termostato ambiente rimuovere il ponticello.
- H1 Esercizio (verde), H2 Guasto (rosso)
- S1/K1 Assegnazione contatti in base alla marca
 - T- TB/TW Termocontatto

Contatto K1 53-54 fabbisogno riscaldamento

F2-4 5,0AT

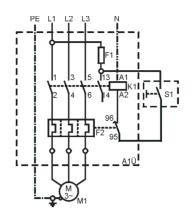
AVVERTENZA:

In assenza di apparecchi di manovra per la protezione totale del motore, la garanzia del motore decade. Il superamento della temperatura ammissibile dell'avvolgimento, senza apparecchio di manovra per la protezione totale del motore, può distruggere il motore.

Salvamotore per 3 x 230 V su richiesta.

AEROTERMO LH

DISPOSITIVI DI COMANDO


DISPOSITIVO DI COMANDO A1 Ü (SENZA INTERRUTTORE ANTIDEFLAGRANTE)

come protezione totale del motore per motori LH a una velocità in versione antideflagrante.

Il dispositivo di comando A1Ü deve essere montato al di fuori della zona a rischio di esplosione!

Tensione di esercizio	400 V
Tensione di comando	230 V
Corrente max.	2,7 A
Peso	0,6 kg
Grado di protezione	IP 55

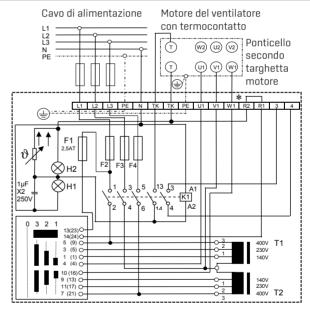
- K1 Relè ausiliario
- F1 Fusibile di comando
- Salvamotore termico
- S1 Interruttore antideflagrante
- M1 Motore del ventilatore

- Interruttore antideflagrante
- Relè A1Ü
- Ventilatore antideflagrante

<u>Posizioni di</u> montaggio:

A1Ü al di fuori della zona a rischio di esplosione Interruttore antideflagrante all'interno della zona a rischio di esplosione

INTERRUTTORE A 3 POSIZIONI D 3-4 CON BLOCCO **CONTRO LA RIATTIVAZIONE ACCIDENTALE**


per funzionamento a 3 velocità di uno o più aerotermi con protezione totale del motore.

Tensione di esercizio	400 V
Tensione di comando	230 V
Corrente max.	4 A
Peso	8,0 kg
Grado di protezione	IP 20

Spegnimento con blocco in caso di sovratemperatura degli avvolgimenti (motore).

Riattivazione: interruttore rotativo in posizione O, quindi impostare la velocità desiderata.

- * In caso di collegamento di un termostato ambiente rimuovere il ponticello.
- H1 Esercizio (verde), H2 Guasto (rosso)
- S1/K1 Assegnazione contatti in base alla marca
 - T TB/TW Termocontatto

Contatto 3/4 - Fabbisogno riscaldamento F2-4 = D5-1 - 1,25AT [6,3x32mm]

AVVERTENZA:

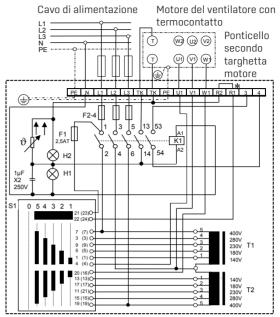
In assenza di apparecchi di manovra per la protezione totale del motore, la garanzia del motore decade. Il superamento della temperatura ammissibile dell'avvolgimento, senza apparecchio di manovra per la protezione totale del motore, può distruggere il motore.

Salvamotore per 3 x 230 V su richiesta.

AEROTERMO LH DISPOSITIVI DI COMANDO

INTERRUTTORE A 5 POSIZIONI D 5...

per funzionamento a 5 velocità di uno o più aerotermi con protezione totale del motore e blocco contro la riattivazione accidentale.


Dimensioni

TIPO		D5-1	D5-3	D5-7	D5-12	D5-19
Larghezza	Α	150	230	230	230	310
Altezza	В	200	310	310	310	385
Profondità	С	175	185	185	185	225

Dimensioni

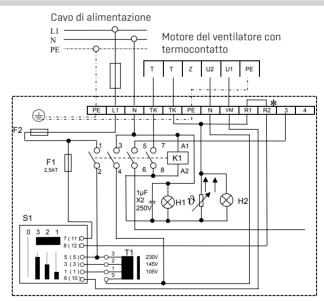
TIPO		D5-1	D5-3	D5-7	D5-12	D5-19
Tensione di esercizio	٧	400	400	400	400	400
Tensione di comando	٧	230	230	230	230	230
Corrente max.	Α	1	2	4	7	12
Peso	kg	4,5	7	9	19	27
Grado di protezione	ΙP	40	20	20	20	20

Spegnimento con blocco in caso di sovratemperatura degli avvolgimenti [motore]. Riattivazione: interruttore rotativo in posizione O, quindi impostare la velocità desiderata.

- * In caso di collegamento di un termostato ambiente rimuovere il ponticello.
- H1 Esercizio (verde), H2 Guasto (rosso)
- S1/K1 Assegnazione contatti in base alla marca
 - T TB/TW Termocontatto

Contatto 3/4 - Fabbisogno riscaldamento

F2-4 = D5-1 - 1,25AT [6,3x32mm]


INTERRUTTORE A 3 POSIZIONI E 3-7T CON BLOCCO CONTRO LA RIATTIVAZIONE ACCIDENTALE

per funzionamento a 3 velocità di uno o più aerotermi con motore a corrente alternata monofase con protezione totale del motore.

Tensione di esercizio	230 V	
Corrente max.	7 A	
Peso	4,5 kg	
Grado di protezione	IP 40	

Spegnimento con blocco in caso di sovratemperatura degli avvolgimenti (motore). Riattivazione: interruttore rotativo in posizione O, quindi impostare la velocità desiderata.

- * In caso di collegamento di un termostato ambiente rimuovere il ponticello.
- H1 Esercizio (verde), H2 Guasto (rosso) S1/K1 Assegnazione contatti in base alla marca
 - T TB/TW Termocontatto

Contatto 3/4 - Fabbisogno riscaldamento F2 - 8,0AT [6,3x32mm]

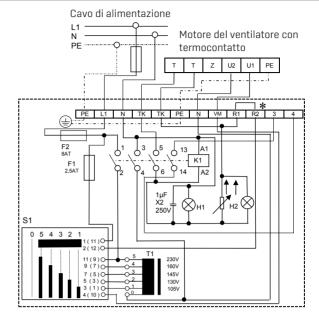
AVVERTENZA:

In assenza di apparecchi di manovra per la protezione totale del motore, la garanzia del motore decade. Il superamento della temperatura ammissibile dell'avvolgimento, senza apparecchio di manovra per la protezione totale del motore, può distruggere il motore.

Salvamotore per 3 x 230 V su richiesta.

AEROTERMO LH

DISPOSITIVI DI COMANDO


INTERRUTTORE A 5 POSIZIONI E 5-7T CON BLOCCO CONTRO LA RIATTIVAZIONE ACCIDENTALE

per funzionamento a 5 velocità di uno o più aerotermi con motore a corrente alternata monofase con protezione totale del motore.

Tensione di esercizio	230 V
Corrente max.	7 A
Peso	4,5 kg
Grado di protezione	IP 40

Spegnimento con blocco in caso di sovratemperatura degli avvolgimenti (motore). Riattivazione: interruttore rotativo in posizione O, quindi impostare la velocità desiderata.

- * In caso di collegamento di un termostato ambiente rimuovere il ponticello.
- H1 Esercizio (verde), H2 Guasto (rosso)
- S1/K1 Assegnazione contatti in base alla marca
 - T TB/TW Termocontatto

Contatto 3/4 - Fabbisogno riscaldamento

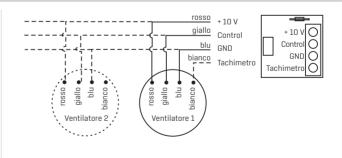
AVVERTENZA:

In assenza di apparecchi di manovra per la protezione totale del motore, la garanzia del motore decade. Il superamento della temperatura ammissibile dell'avvolgimento, senza apparecchio di manovra per la protezione totale del motore, può distruggere il motore.

Salvamotore per 3 x 230 V su richiesta.

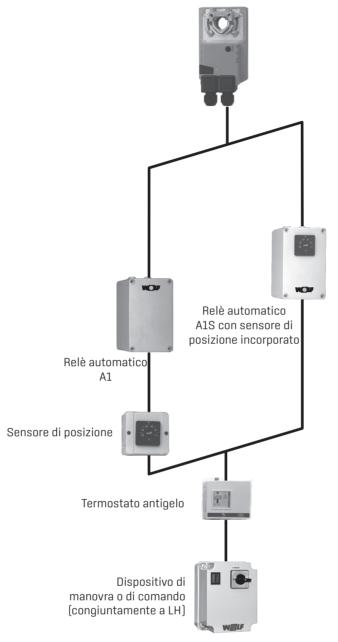
AEROTERMO LH-EC

DISPOSITIVI DI COMANDO


REGOLATORE DI VELOCITÀ CONTINUO 0-10 V

Per funzionamento in continuo di uno o più aerotermi con motore EC

Con un regolatore di velocità possono essere impiegati fino a 10 LH-EC in continuo.



Tensione di esercizio	10 V (DC)
Tensione di comando	0-10 V (DC)
Corrente max.	1,1 mA
Resistenza	0-10 k0hm (Lin)
Peso	0,1 kg
Grado di protezione	IP 54

AEROTERMO LH-EC / LH ATTUATORI PER SERRANDE

Servomotore a regolazione continua 230 V per serranda aria esterna/aria ricircolata

SERVOMOTORE APERTURA/ CHIUSURA 230 V

Per l'azionamento motorizzato di una serranda dell'aria esterna abbinata a un relè automatico A1.

Messa in funzione dell'aerotermo LH-EC / LH ->

La serranda aria esterna si apre

Messa fuori servizio dell'aerotermo LH-EC / LH \longrightarrow

La serranda aria esterna si chiude o interviene la protezione antigelo

SERVOMOTORE A REGOLAZIONE CONTINUA 230 V O 24 V

Per l'azionamento motorizzato in continuo di serrande dell'aria esterna/aria ricircolata congiuntamente al relè automatico A1 e a un sensore di posizione nel quadro elettrico o a vista o con il relè automatico A1S con sensore di posizione integrato.

Avviamento dell'aerotermo LH-EC / LH

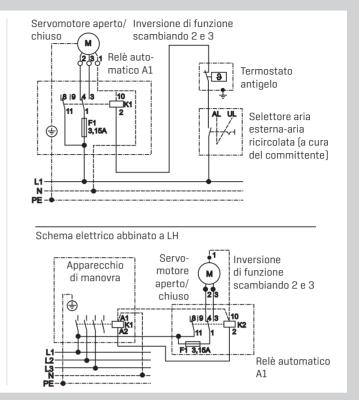
La serranda aria esterna si apre fino al valore impostato, la serranda aria ricircolata si chiude di conseguenza.

Spegnimento dell'aerotermo LH-EC / LH

► La serranda aria esterna si chiude oppure interviene la protezione antigelo, la serranda aria ricircolata viene aperta al 100%.

AEROTERMO LH-EC / LH

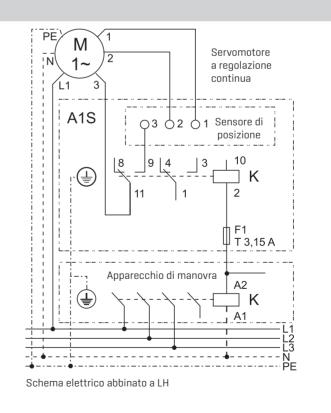
DISPOSITIVI DI COMANDO SERVOCOMANDI PER SERRANDE


RELÈ AUTOMATICO A1

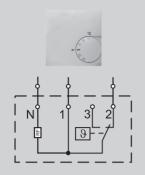
Relè ausiliario per l'azionamento automatico della serranda dell'aria esterna con servomotore 230 V "aperto-chiuso".

Allo spegnimento dell'apparecchio LH-EC / LH o in caso di intervento del termostato antigelo, il relè automatico A1 porta il servomotore in posizione "chiusa", all'accensione il servomotore va in posizione "aperta".

Tensione di esercizio	230 V
Potenza max.	1,5 kW
Peso	0,5 kg
Grado di protezione	IP 54


RELÈ AUTOMATICO A1S

Relè ausiliario con sensore di posizione incorporato per l'azionamento automatico della serranda dell'aria miscelata con servomotore 230 V in continuo.


Allo spegnimento dell'apparecchio LH-EC / LH o in caso di intervento del termostato antigelo, il relè automatico A1S porta il servomotore in posizione "chiusa".

Tensione di comando	230 V
Potenza max.	1,5 kW
Peso	0,5 kg
Grado di protezione	IP 54

AEROTERMO LH-EC / LH TERMOSTATI AMBIENTE

TERMOSTATO AMBIENTE

In alloggiamento in plastica 75 x 75 x 25 mm per montaggio a vista. Potere di apertura riscaldamento 10(4)A, raffreddamento 5(2)A a 230 V / 50 Hz, ricircolo termico.

Intervallo di temperatura 5 - 30 °C

Differenziale di commutazione 0,5 K

Grado di protezione IP 30

TERMOSTATO AMBIENTE CON COMMUTATORE ESTATE-INVERNO

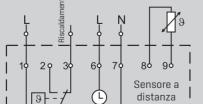
In alloggiamento in plastica 75 x 75 x 25 mm per montaggio a vista. Potere di apertura riscaldamento 10(4)A, raffreddamento 5(2)A a 230 V / 50 Hz, ricircolo termico.

Intervallo di temperatura 5 - 30 °C

Differenziale di commutazione 0,5 K

Grado di protezione IP 30

TERMOSTATO AMBIENTE IN VERSIONE INDUSTRIALE


In alloggiamento in plastica 145 x 112 x 68 mm per montaggio a vista. Potere di apertura 16(4) A a 230 V / 50 Hz

Intervallo di temperatura 0 - 40 °C

Differenziale di commutazione ±0,75 K

Grado di protezione IP 54

esterno (optional)

OROLOGIO TERMOREGOLATORE CON PROGRAMMA SETTIMANALE

In alloggiamento in plastica 132 x 82 x 32 mm per montaggio su zoccolo da innesto, temperatura diurna o notturna regolabile separatamente.

Abbassamento della temperatura di 2 - 10 K regolabile

Potere di apertura 10(4) A a 230 V / 50 Hz

Intervallo di temperatura 5 - 40 °C

Differenziale di commutazione regolabile ±0,1 - 3K

Grado di protezione IP 20

AEROTERMO LH-EC / LH TERMOSTATI, MORSETTIERA

SENSORE A DISTANZA PER OROLOGIO TERMOREGOLATORE

In alloggiamento in plastica 52 x 50 x 35 mm per montaggio su zoccolo da innesto Grado di protezione IP 54 $\,$

TERMOSTATO ANTIGELO

Il termostato antigelo spegne l'apparecchio LH-EC / LH se la temperatura di uscita dell'aria scende al di sotto di un valore impostabile evitando così danni allo scambiatore di calore causati dal gelo. All'aumentare della temperatura di uscita dell'aria, l'apparecchio LH-EC / LH si rimette in funzione automaticamente.

Il termostato antigelo deve essere collegato in serie con i termocontatti!

Potere di apertura 10 A a 230 V / 50 Hz

Campo di regolazione da 2 °C a 20 °C

Differenziale di commutazione 2,5 K

Grado di protezione IP 43

Dimensioni L x H x P 85 x 75 x 40 mm

MORSETTIERA INTERMEDIA

Morsettiera intermedia per il cablaggio parallelo di un massimo di 3 aerotermi LH con motori da 3 x 400 V, 50 Hz.

Grado di protezione IP 54

Dimensioni L x H x P 105 x 170 x 112 mm

Interruttore di riparazione onnipolare AR8

montata e cablata

AEROTERMO LH-EC / LH SISTEMA DI REGOLAZIONE (WRS)

MODULO DI COMANDO VENTILAZIONE BML

- Regolazione della temperatura in base alla temperatura ambiente
- · Display retroilluminato
- · Semplice menu con chiara visualizzazione dei messaggi di testo
- · Comando tramite manopola con funzione tasto
- 4 tasti funzione per le funzioni più utilizzate (Info, regolazione di temperatura, regolazione di velocità, percentuale aria esterna)
- Può essere montato a scelta nell'unità di trattamento aria o nella presa a muro come comando remoto
- Un modulo di comando ventilazione BML è sufficiente per comandare fino a 7 zone
- · Richiesta di temperatura della caldaia con ottimizzazione del fabbisogno tramite eBus
- Interfaccia eBus

SUPPORTO A PARETE

Per l'utilizzo del modulo di comando ventilazione BML come comando remoto

MODULO DI REGOLAZIONE LM1 (INCLUSO SENSORE TEMPERATURA AMBIENTE)

- · Modulo di regolazione per aerotermi con motore a due stadi
- · Semplice configurazione del regolatore grazie agli schemi di impianto predefiniti
- Regolazione della temperatura ambiente con ottimizzazione del fabbisogno attraverso la velocità dell'aerotermo
- · Comando della pompa del circuito di riscaldamento
- · Comando di una caldaia
- Richiesta di temperatura della caldaia con ottimizzazione del fabbisogno tramite eBus
- · Interfaccia eBus con gestione energetica automatizzata
- · Sede di aggancio del modulo di comando ventilazione BML

MODULO DI REGOLAZIONE LM2

- •Modulo di regolazione LM2 per la regolazione della temperatura ambiente tramite modulazione di velocità o valvola miscelatrice
- Comando motore a 2 stadi abbinato a modulo di comando LM1 o comando motore a regolazione continua tramite segnale 0-10 V abbinato a ventilatore EC
- · Semplice configurazione del regolatore grazie agli schemi di impianto predefiniti
- · Comando di una caldaia
- · Richiesta di temperatura della caldaia con ottimizzazione del fabbisogno tramite eBus
- · Interfaccia eBus con gestione energetica automatizzata
- · Sede per aggancio del modulo di comando ventilazione BML
- Regolazione serranda aria miscelata (abbinata a servomotore 24 V)
- · Regolazione serranda di induzione

SENSORE TEMPERATURA ESTERNA, SOFFITTO O AMBIENTE

AEROTERMO LH-EC / LHSISTEMA DI REGOLAZIONE (WRS)

PRESSOSTATO DIFFERENZIALE

Pressostato differenziale sfuso per la regolazione a cura del committente

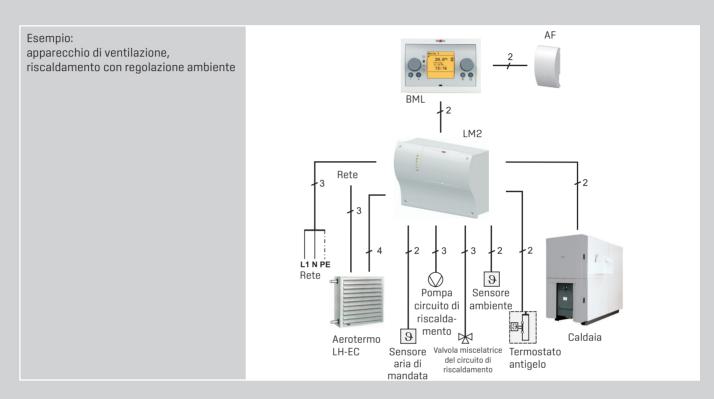
INTERRUTTORE A 5 POSIZIONI

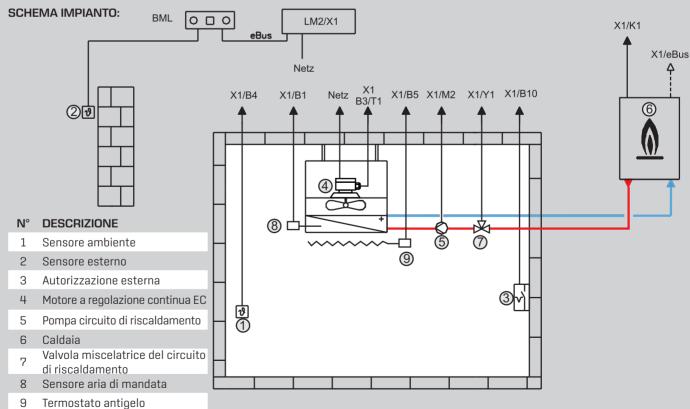
Regolatore elettronico di velocità a 5 posizioni, ingresso 0-10 V

SENSORE ARIA DI MANDATA E SUPPORTO PER SENSORE

per la misurazione della temperatura di mandata

ISM 5 - MODULO INTERFACCIA LON


per il collegamento delle unità di trattamento aria LM1 e LM2 ai sistemi di gestione degli edifici utilizzando il protocollo di rete standard LON

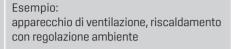

MODULO DI COMANDO LM2 CON BML ABBINATA A LH-EC

DESCRIZIONE

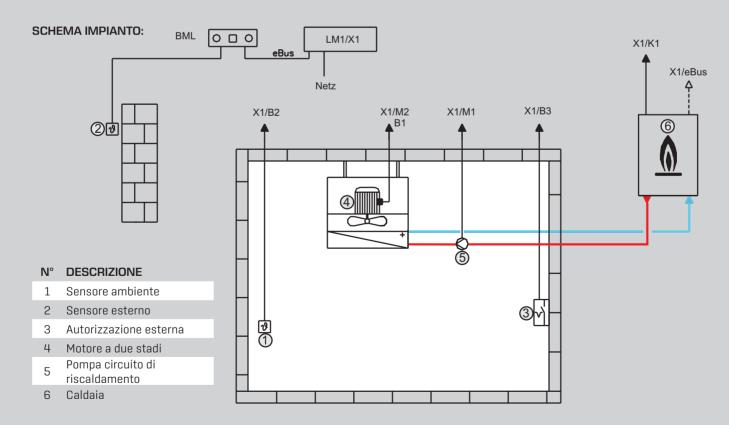
Questa configurazione serve al riscaldamento degli edifici abbinato ad aerotermi. La temperatura ambiente viene rilevata per mezzo di un sensore e il ventilatore, la pompa del circuito di riscaldamento, la caldaia e la valvola miscelatrice del circuito di riscaldamento vengono accesi o spenti in funzione del fabbisogno.

È possibile preselezionare una regolazione della valvola miscelatrice o della velocità.

AEROTERMO LH

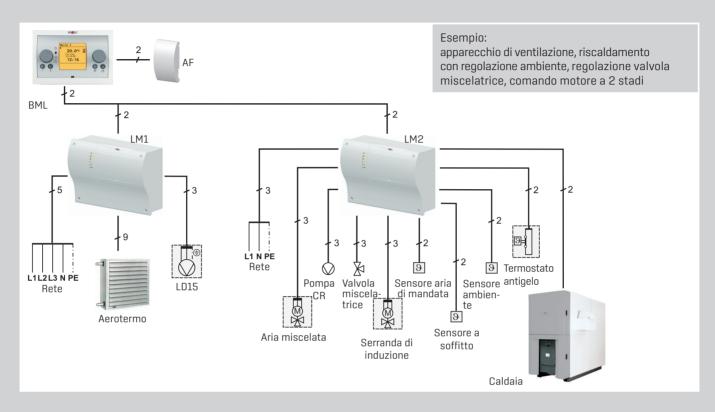

SISTEMA DI REGOLAZIONE (WRS)

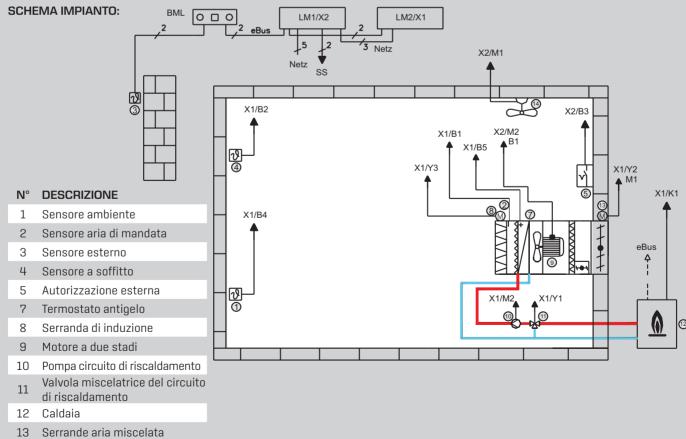

MODULO DI COMANDO LM1 CON BML


DESCRIZIONE

Questa configurazione serve al riscaldamento degli edifici abbinato ad aerotermi. La temperatura ambiente viene rilevata per mezzo di un sensore e il ventilatore, la pompa del circuito di riscaldamento e la caldaia vengono accesi o spenti in funzione del fabbisogno.

Se lo scostamento di temperatura (temperatura ambiente di riferimento rispetto a temperatura ambiente effettiva) è ridotto, il ventilatore funziona nello stadio 1. In presenza di uno scostamento di temperatura maggiore, l'apparecchio commuta sullo stadio 2.




MODULI DI COMANDO LM1 E LM2 CON BML

LD15, ventilatore a soffitto

DESCRIZIONE:

Questa configurazione serve al riscaldamento degli edifici abbinato ad aerotermi. La temperatura ambiente viene rilevata per mezzo di un sensore e i ventilatori, la pompa del circuito di riscaldamento, la valvola miscelatrice del circuito di riscaldamento e la caldaia vengono accesi o spenti in funzione del fabbisogno.

AEROTERMO LH

SISTEMA DI REGOLAZIONE (WRS)

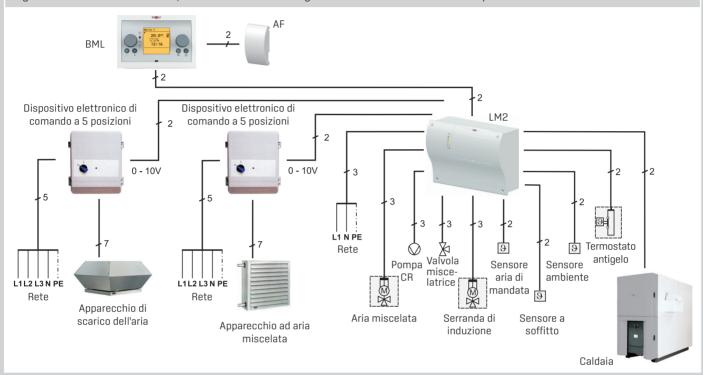
MODULO DI COMANDO LM2 CON BML

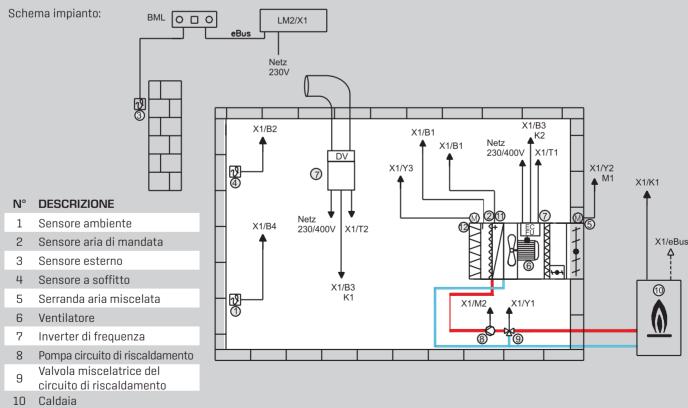
Termostato antigelo

Serranda di induzione

11

12

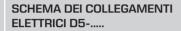

DESCRIZIONE:

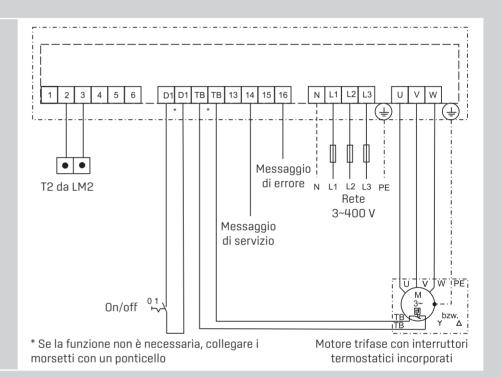

Questa configurazione serve al riscaldamento degli edifici abbinato ad aerotermi. La temperatura ambiente viene rilevata per mezzo di un sensore e i ventilatori, la pompa del circuito di riscaldamento, la valvola miscelatrice del circuito di riscaldamento e la caldaia vengono accesi o spenti in funzione del fabbisogno. Il consenso al ventilatore di ripresa viene dato in funzione della percentuale di aria esterna.

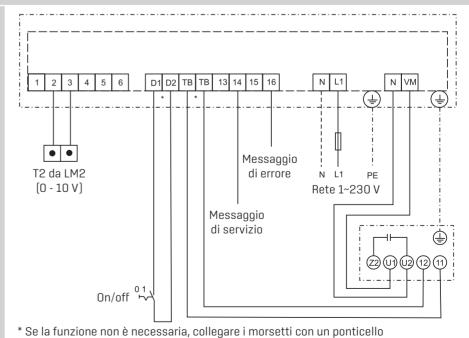
Esemnin

apparecchio di ventilazione, riscaldamento con regolazione ambiente,

regolazione valvola miscelatrice, comando motore con regolatore elettronico di velocità a 5 posizioni

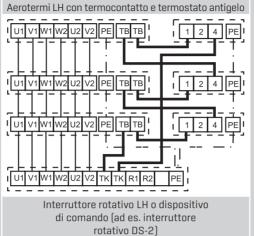


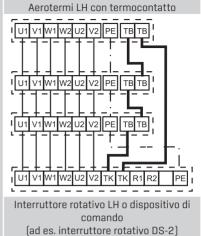

INTERRUTTORE ELETTR. A 5 POSIZIONI PER 0 - 10 V


INTERRUTTORE A 5 POSIZIONI 0 - 10 V:

TIPO DI INTERRUTTORE	D5-2F	D5-4F	E5-6F
Tensione	400 V	400 V	230 V
Corrente max.	2 A	4 A	6 A
Peso	7,4 kg	11,0 kg	5,2 kg
Grado di protezione	IP 21	IP 21	IP 20

SCHEMA DEI COLLEGAMENTI **ELETTRICI E5-6F**


AEROTERMO LH


COLLEGAMENTO ELETTRICO / AZIONAMENTI SPECIALI

AVVERTENZA:

È possibile collegare in parallelo su un apparecchio di manovra con protezione totale del motore aerotermi LH di dimensioni e potenze diverse fino alla potenza massima ammissibile o fino alla corrente massima ammissibile.

In caso di collegamento di vari aerotermi, i morsetti del motore devono essere collegati in parallelo e i termocontatti e termostati antigelo devono essere collegati in serie!

Numero di conduttori per cavi di collegamento

COLLEGAMENTO			APP	AREC	CHIO DI	MANO	/RA		
Α	D1-2	DS-2	D3-4	D5	E3-7T	E5-7T	A1Ü	A1	A1S
Rete	5	5	5	5	3	3	5	-	-
Motore LH 3 x 400 V	6	9	6	6	-	-	4	-	-
Motore LH 1 x 230 V	-	-	-	-	5	5	-	-	-
Termostato ambiente	3/41]	3/41]	3/41]	3/41]	3/41]	3/41]	-	-	-
Orologio termoregolatore	5	5	5	5	5	-	-	6 ^{2]}	
Relè autom. A1	4	4	4	4	4	4	-	-	-
Dispositivo di comando A1S	4	4	-	4	-	4	-	-	-
Servomotore	-	-	-	-	-	-	-	4	6
Interruttore antideflagrante	-	-	-	-	-	-	3	-	-

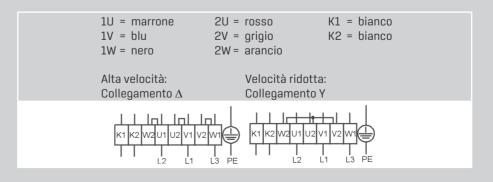
^{1]} In caso d'impiego di un termostato ambiente con ricircolo termico.

Realizzare il collegamento con il termostato antigelo con 3 conduttori.

MOTORI A CORRENTE ALTERNATA MONOFASE 230 V / 50 HZ

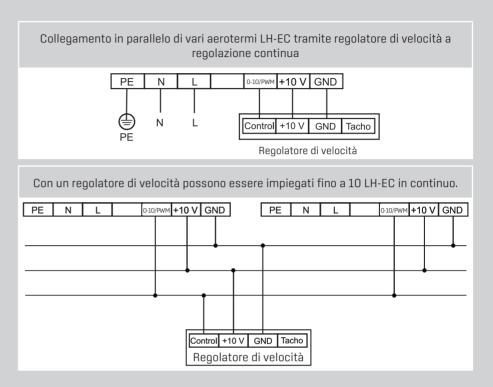
I motori a corrente alternata monofase vengono forniti nel regime di velocità superiore fino al modello LH 63.

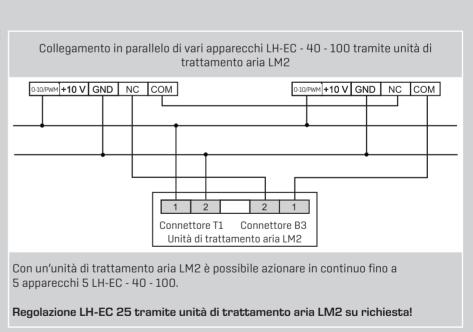
Termocontatti in serie con l'avvolgimento del motore.


Regolazione di velocità con interruttore a 5 posizioni tipo E5-3 per LH 25, 40, 63

LH-ATEX MOTORE TRIFASE 3 X 400 V/ 50 HZ

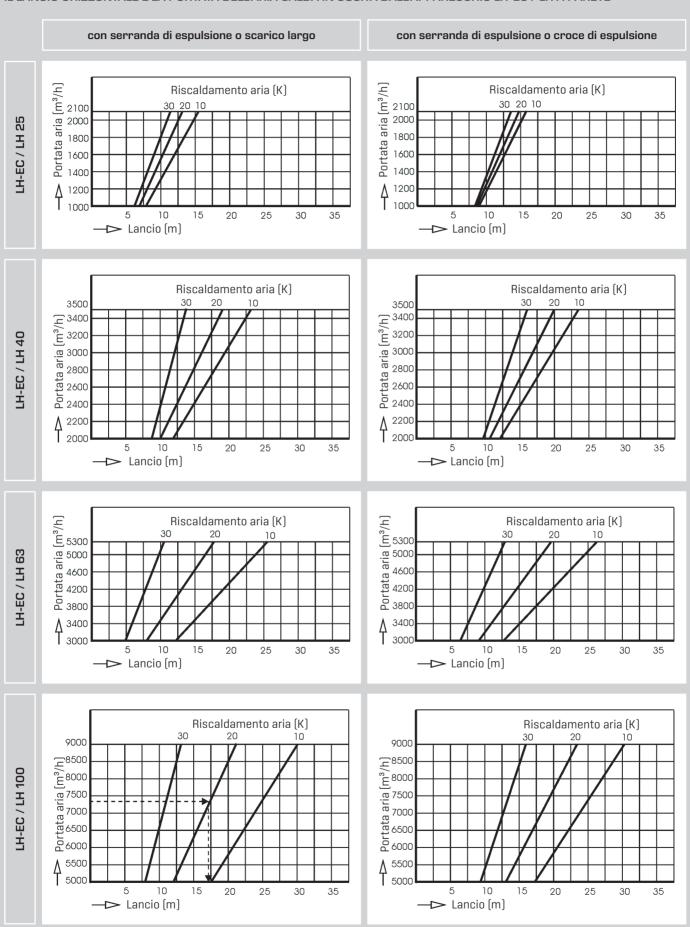
Motore trifase con 2 velocità tramite commutazione Δ /Y.


Protezione integrale del motore tramite conduttore a freddo incorporato. Senza ponticelli in caso di impiego di commutatore di velocità.

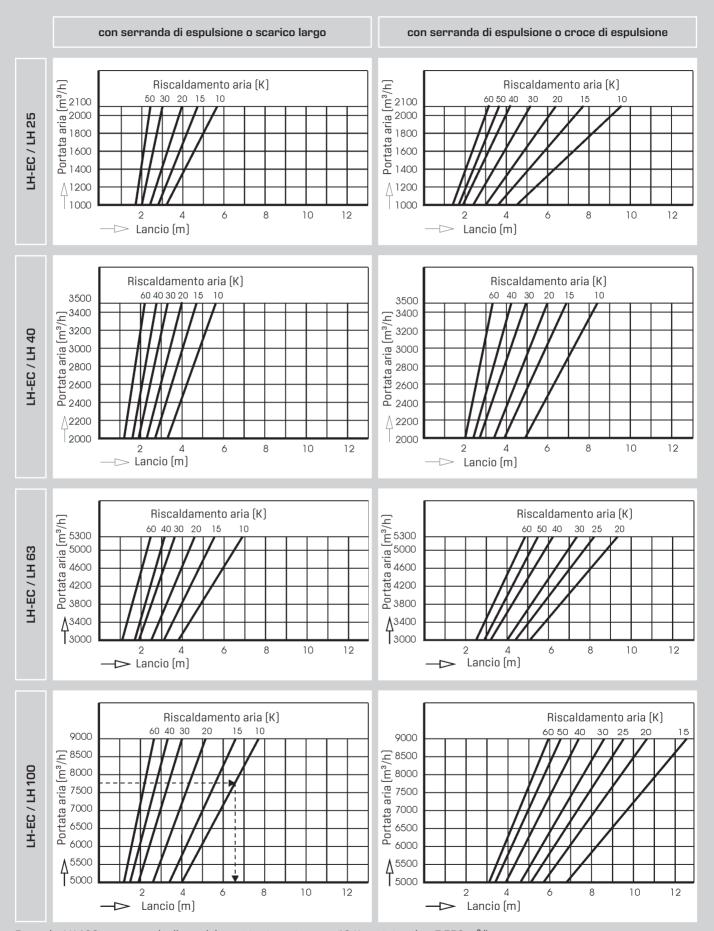

²⁾ A 2 posizioni

COLLEGAMENTO ELETTRICO LH-EC

REGOLAZIONE TRAMITE REGOLATORE DI VELOCITÀ A REGOLAZIONE CONTINUA 0 - 10 V

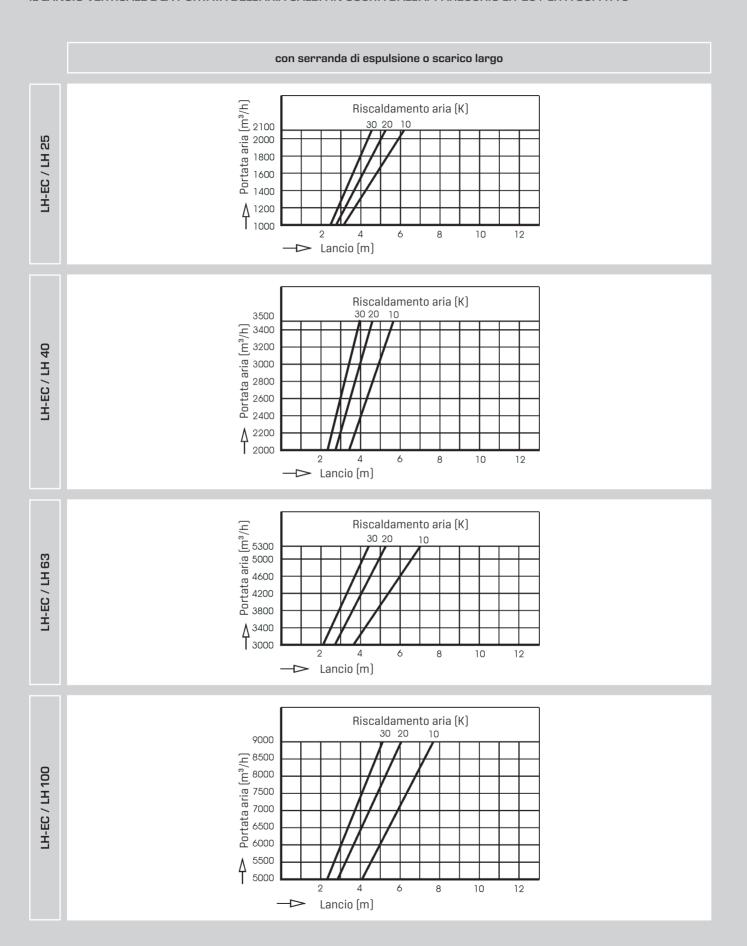

REGOLAZIONE LH-EC 40 - 100 TRAMITE UNITÀ DI TRATTAMENTO ARIA LM2

AEROTERMO LH-EC / LH


AVVERTENZE PER LA PROGETTAZIONE

IL LANCIO ORIZZONTALE È LA PORTATA DELL'ARIA CALDA IN USCITA DALL'APPARECCHIO LH-EC / LH A PARETE

Esempio: LH 100 con serranda di espulsione; $\Delta t_L = t_{LAeff} - t_{ambiente} = 20$ K; portata aria = 7 300 m³/h Risultato: lancio orizzontale = 17 m


IL LANCIO VERTICALE È LA PORTATA DELL'ARIA CALDA IN USCITA DALL'APPARECCHIO LH-EC / LH A SOFFITTO

Esempio: LH 100 con serranda di espulsione; $\Delta t_L = t_{LAeff} - t_{Ambiente} = 10$ K; portata aria = 7 750 m³/h Risultato: lancio verticale = 6,6 m

AEROTERMO LH-EC / LHAVVERTENZE PER LA PROGETTAZIONE

IL LANCIO VERTICALE È LA PORTATA DELL'ARIA CALDA IN USCITA DALL'APPARECCHIO LH-EC / LH A SOFFITTO

FORMULA

Conversione:

1 Pa = 0,1 mm WS 1 kPa = 1000 Pa

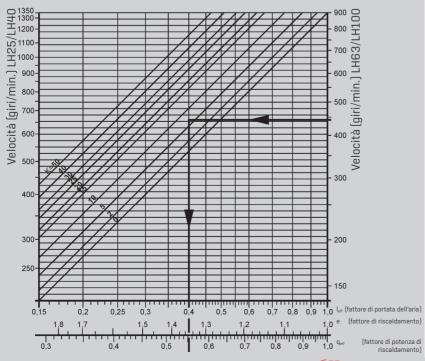
V	= portata volumetrica	m³/h
У в	= portata volumetrica di riferimento	m³/h
٧o	= portata volumetrica di catalogo	m³/h
\dot{V}_{eff}	= portata volumetrica effettiva	m³/h
$t_{\scriptscriptstyle LE}$	= temperatura ingresso aria	°C
$t_{\scriptscriptstyle LA}$	= temperatura uscita aria	°C
$t_{\scriptscriptstyleLAeff}$	= temperatura di uscita aria effettiva	°C
$\Delta t_{\scriptscriptstyle L}$	= riscaldamento aria	К
Δt_{W}	= differenza di temperatura dell'acqua	К
W	= portata acqua	m³/h
¢	= potenza termica	kW
٥٥	= potenza termica di catalogo	kW
† eff	= potenza termica effettiva	kW
Δр	= resistenza dell'aria	Pa
Δp_{W}	= resistenza dell'acqua	kPa
е	= fattore di riscaldamento	
q _{eff}	= fattore di potenza di riscaldamento	

Numero degli accessori K:

varrier o aegir accessor i ix.	
Cassetta aria miscelata	3
Espulsione su quattro lati	2
Ugello di espulsione	2
Cono di espulsione	2
Scarico largo	C
Filtro pulito	5
Canale di aspirazione	2
Cuffia antipioggia	2
Griglia di protezione contro gli	
agenti atmosferici	7
Serranda antiritorno	3
Cassetta aria esterna	(
Cassetta aria ricircolata	(
Cuffia di aspirazione	1
Croce di espulsione	1
Serranda di induzione (parete)	2
Serranda di induzione (soffitto)	13

Per gli accessori a cura del committente è necessario calcolare k:

= numero di accessorio dell'intero apparecchio


$$k = 0.1 \cdot \Delta p \cdot \left(\frac{\dot{V}_B}{\dot{V}} \right)^2$$

= fattore quantità aria

 Δp = Resistenza aria (Pa) con \dot{V} (m³/h) \dot{V} =Portata volumetrica (m³/h) con Δp (Pa)

LH	Ů _B
25	2000 m³/h
40	3000 m³/h
63	6000 m³/h
100	10000 m³/h

DIAGRAMMA DELLE CURVE CARATTERISTICHE

ESEMPIO

Dati:

LH 100 tipo 4, $t_{LE} = -5$ °C, PWW 50/40

dalla tabella dati a pagina 20: (leggere sempre in caso di alta velocità poiché nel diagramma delle curve caratteristiche sono inseriti fattori di correzione per il funzionamento a velocità più basse.)

> $\dot{V}_0 = 7700 \text{ m}^3/\text{h}$ $\dot{\dot{Q}}_0 = 96.1 \text{ kW}$ $t_{LA} = 29 ^{\circ}\text{C}$ $\Delta t_{LO} = [29+5] \text{ K} = 34 \text{ K}$

Tensione di alimentazione 3 x 400 V ∆ con interruttore a 5 posizioni, posizione interruttore 1 dalla tabella velocità a pagina 55: 440 giri/min.

Accessori: Cassetta aria miscelata k = 3
Accessori a cura del committente: Canale aria esterna

 $\Delta p = 10 \text{ Pa a } 5000 \text{ m}^3/\text{h}$ $k = 0.1 \cdot 10 \cdot \left(\frac{10000}{5000}\right)^2$ k = 4 k = 3 + 4 = 7

LH 100, 440 giri/min., k = 7

dal diagramma delle curve caratteristiche:

 $I_{eff} = 0,4$ e = 1,35 $q_{eff} = 0,55$

Ricercata:

portata d'aria effettiva	V eff
Riscaldamento effettivo dell'aria	Δt_{Leff}
Temperatura di uscita aria effettiva	$t_{\text{LA eff}}$
Potenza termica effettiva	\dot{Q}_{eff}
Portata acqua	W
Resistenza dell'acqua	Δp_{w}

Soluzione:

$$\begin{split} & \mathring{\mathbf{v}}_{\text{eff}} = \mathring{\mathbf{v}}_{0} \cdot I_{\text{eff}} = 7700 \text{ m}^{3} / h \cdot 0.4 = 3080 \text{ m}^{3} / h \\ & \Delta t_{\text{Leff}} = \Delta t_{\text{L0}} \cdot e = 34 \text{ K} \cdot 1.35 = 45.9 \text{ K} \\ & t_{\text{LA eff}} = t_{\text{LE}} + \Delta t_{\text{Leff}} = -5 + 45.9 \,^{\circ}\text{C} = 40.9 \,^{\circ}\text{C} \\ & \mathring{\mathbf{0}}_{\text{eff}} = \mathring{\mathbf{0}}_{0} \cdot q_{\text{eff}} = 96.1 \text{ kW} \cdot 0.55 = 52.9 \text{ kW} \\ & W = \frac{0.86 \cdot \mathring{\mathbf{0}}_{\text{eff}}}{\Delta t_{w}} = \frac{0.86 \cdot 52.9}{10} = 4.5 \text{ m}^{3} / h \\ & \Delta p_{w} \left(\text{diagramma pagina 20} \right) = 8.5 \text{ kPa} \end{split}$$

AEROTERMO LH-EC

LIVELLO DI PRESSIONE SONORA

LIVELLO DI PRESSIONE SONORA / LIVELLO DI POTENZA SONORA IN FUNZIONE DELLA VELOCITÀ

		LH-EC 29	5		LH-EC 40	כ		LH-EC 63	3		LH-EC 10	0
Tensione di comando	Velocità	Livello di potenza sonora	Livello di pressione sonora*									
v	giri/ min.	dBA	dBA									
			2 m			2 m			2 m			2 m
10	1500	72	59	1350	74	62	1000	74	63	900	72	63
9	1450	70	58	1330	74	62	950	73	62	860	71	62
8	1320	67	55	1300	73	61	850	69	59	810	70	60
7	1170	64	52	1170	70	58	750	66	55	720	66	57
6	1020	61	49	1010	66	54	640	62	51	610	63	53
5	860	56	44	850	61	50	530	58	47	510	58	48
4	700	50	39	670	55	43	430	52	41	410	54	45
3	540	43	32	490	49	37	320	44	34	305	47	40
2	370	34	26	330	41	28	210	34	27	205	39	32
1	220	25	22	160	39	25	105	33	26	100	38	32

^{*} Livello di pressione sonora misurato in un locale a medio assorbimento, dimensioni del locale ca. 1500 m³

AEROTERMO LH TABELLA VELOCITÀ

TABELLA VELOCITÀ PER MOTORI PER VENTILATORE LH

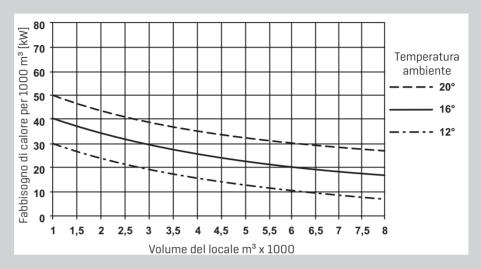
TENSIONE DI ALIMENTAZIONE	STADIO	LH 25 Velocità giri/min.	LH 40 Velocità giri/min.	LH 63 Velocità giri/min.	LH 100 Velocità giri/min.
Interruttore a una posizione					
3 x 400 V ∆	-	1350	1350	900	900
3 x 400 V Y	-	1000	1000	700	700
3 x 230 V ∆	-	1000	1000	700	700
Interruttore a due posizioni					
3 x 400 V ∆	Ш	1350	1350	900	900
3 x 400 V Y	I	1000	1000	700	700
3 x 230 V ∆	Ш	1350	1350	900	900
Interruttore a tre posizioni					
3 x 400 V △	III	1350	1350	900	900
230 V ∆	Ш	1150	1150	800	750
140 V ∆		750	800	550	500
3 x 400 V Y	III	1000	1000	700	700
230 V Y	Ш	700	800	500	500
140 V Y		400	450	300	300
1 x 230 V	III	1350	1350	900	
145 V	Ш	1250	900	750	
105 V		750	600	500	
Interruttore a cinque posizioni					
3 x 400 V ∆	V	1350	1350	900	900
280 V ∆	IV	1280	1300	850	840
230 V △	III	1210	1200	800	750
180 V ∆	Ш	1050	1090	710	620
140 V		800	800	550	500
3 x 400 V Y	V	1000	1000	700	700
3 x 230 V ∆	IV	800	840	590	540
	III	660	700	500	440
	II	490	550	400	350
		360	400	300	270
1 x 230 V	V	1350	1350	900	
160 V	IV	1290	1140	750	
145 V	III	1230	960	640	
130 V	II	1160	780	540	
105 V	I	750	650	500	

LIVELLO DI PRESSIONE SONORA / LIVELLO DI POTENZA SONORA IN FUNZIONE DELLA VELOCITÀ

	LH 25		LH 40		LH 63			LH 100			
Velocità	Livello di potenza sonora	Livello di pressione sonora*									
giri/min.	dBA	dBA 2m									
1350	74	63	1350	78	67	900	77	66	900	82	71
1290	73	62	1300	77	66	850	76	65	840	80	69
1280	73	62	1200	75	64	800	74	63	750	78	67
1230	72	61	1140	74	63	750	73	62	700	76	65
1210	72	61	1090	73	62	710	71	60	620	74	63
1160	71	60	1000	72	61	700	71	60	540	71	60
1050	68	57	960	71	60	640	70	59	440	66	55
1000	68	57	840	68	57	590	68	57	350	61	50
860	64	53	780	66	55	560	67	56	270	56	45
800	63	52	700	64	53	540	66	55	220	51	40
660	58	47	580	60	49	500	64	53	160	44	33
530	53	42	550	58	47	400	59	48			
490	52	41	530	58	47	360	57	46			
430	49	38	490	56	45	300	53	42			
360	45	34	400	51	40	280	52	41			
320	43	32	380	50	39	210	45	34			
240	36	25	280	44	33						

^{*} Livello di pressione sonora calcolato per un locale a medio assorbimento, dimensioni del locale ca. 1500 m³

AEROTERMO LH-EC / LH


AVVERTENZE PER LA PROGETTAZIONE

DETERMINAZIONE APPROSSIMATIVA DEL FABBISOGNO DI CALORE

Anche per la progettazione degli impianti di riscaldamento dell'aria si consiglia un calcolo esatto del fabbisogno di calore secondo le normative vigenti. Tuttavia si constata sempre che un calcolo preciso non è possibile per mancanza di tempo o a causa di dati incompleti riguardo al tipo di costruzione. Con l'ausilio del diagramma che segue è possibile calcolare approssimativamente il fabbisogno di calore.

Tipo di costruzione:

Pareti circostanti: mattoni da 25 c, o similari Copertura tetto: calcestruzzo cellulare o similare Riscaldamento in regime di ricircolo

Fattori di correzione Supplementi:

Tetto ondulato non isolato	.+40%
Tetto ondulato leggermente isolato	.+20%
Tetto in legno con cartone o lamiera	.+20%
Parete esterna in metallo non isolata	.+20%
Capannoni estremamente stretti	.+20%
Grandi finestre nella narete esterna	.+10%

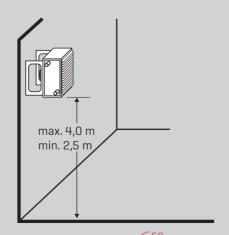
Riduzioni:

Parete esterna collegata al 75% dell'edificio	-15%
Parete esterna collegata al 50% dell'edificio	-10%
Parete esterna senza finestre e mattoni pieni	-30%
Piano superiore riscaldato	-30%
Per ogni lato del locale adiacente riscaldato	-10%

AVVERTENZE GENERALI PER LA PROGETTAZIONE

Portata volumetrica necessaria dell'aria (m³/h) min. 2,5 meglio 3-4 volte il volume del locale. Il flusso d'aria non deve investire direttamente le persone.

Distanza tra gli aerotermi 10-15 m.

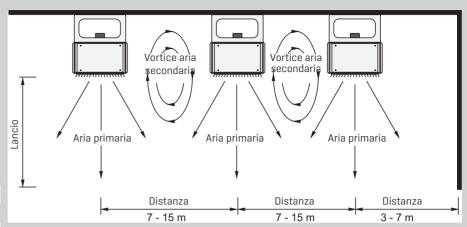

Per gli aerotermi a parete distanza dal pavimento min. 2,5 m, max. 4 m.

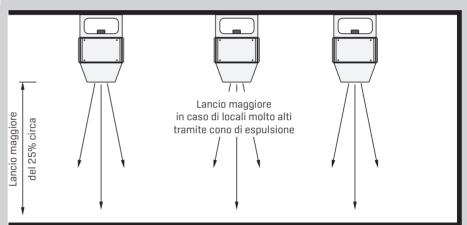
Tener conto del lancio.

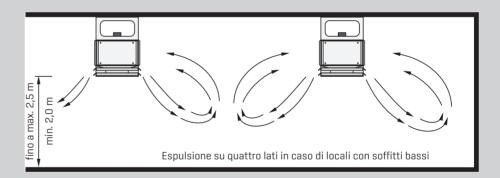
Quando la distanza tra l'aerotermo e la parete opposta è ridotta, utilizzare lo scarico largo. Se il lancio degli aerotermi a soffitto con griglia di espulsione normale non è sufficiente, prevedere il cono di espulsione o la serranda di induzione.

Per locali con soffitti bassi con una distanza inferiore a 2,5 m tra il lato inferiore della griglia di espulsione e il pavimento, utilizzare l'espulsione su quattro lati.

Montaggio apparecchio a parete (Temp. di espulsione consigliata 35 °C) Nei locali molto polverosi si raccomanda l'impiego di elementi filtranti per proteggere le alette. I filtri richiedono una manutenzione regolare e devono essere accessibili.




AEROTERMO LH-EC / LH AVVERTENZE PER LA PROGETTAZIONE


DISTANZE DI MONTAGGIO

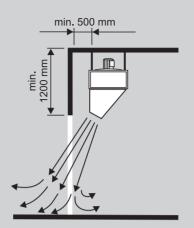
Distanze di montaggio per LH-EC / LH Apparecchio a soffitto o apparecchio a parete in m

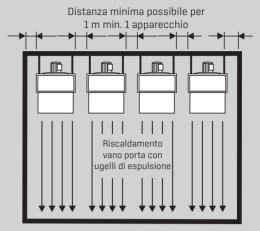
LH-EC / LH	da LH-EC / LH a	a da LH-EC / LH alla parete
25	7 - 9	3 - 4
40	9 - 11	3 - 5
63	11 - 13	4 - 6
100	13 - 15	5 - 7

Accessori di espulsione per una distribuzione ottimale dell'aria

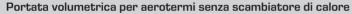
in presenza delle distanze sopracitate tra gli apparecchi, riscaldamento dell'aria di Δt_L (= $t_{espulsione}$ - $t_{ambiente}$) di ca. 25K e alta velocità

LH-EC / LH	25	40	63	100		
Distanza: espulsione/pavimento						
fino a 2,5 m	Espulsione su 4 lati	Espulsione su 4 lati	Espulsione su 4 lati	Espulsione su 4 lati		
3-4 m	Scarico largo serranda	Scarico largo serranda	Scarico largo	Scarico largo		
4-5 m	Cono	Cono	Serranda	Scarico largo		
5-6 m	Cono	Cono	Cono	Serranda		
da 6 m	Cono	Cono	Cono	Cono		


In presenza di una differenza di temperatura Δt_L superiore a 30 K, a causa della ridotta profondità di penetrazione, questa tabella di selezione degli accessori non è più valida.


AEROTERMO LH-EC / LH

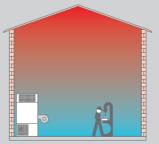
AVVERTENZE PER LA PROGETTAZIONE


Riscaldamento vano porta con ugello di espulsione

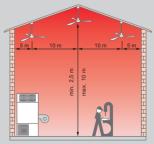
Allineare tra loro gli apparecchi per il riscaldamento del vano della porta. In presenza di esigenze maggiori, disporre due file una dietro l'altra. Temperatura di espulsione di 10-15 K al di sopra della temperatura ambiente.

Montaggio di un aerotermo LH-EC / LH supplementare senza scambiatore di calore per un migliore ricircolo dell'aria

	LH-EC / LH	25	40	63	100
Portata volumetrica	m³/h	1400/2400	2400/3950	3950/6000	6100/10700
Velocità	giri/ min.	1000/1350	1000/1350	700/900	700/900


VENTILATORE A SOFFITTO LD 15

AVVERTENZE PER LA PROGETTAZIONE VENTILATORE A SOFFITTO


Il lancio dell'aerotermo LD 15 senza stratificazione di temperatura è di ca. 10 m. A partire da un'altezza del locale di 7 m, gli aerotermi LD 15 devono essere montati sfalsati in altezza per ottenere lanci sufficienti. Nel punto più alto del locale deve essere montato un aerotermo LD 15 in modo che non vi siano concentrazioni di aria calda sotto il soffitto.

Spegnendo in via prioritaria i ventilatori a soffitto mentre le porte rimangono aperte per un breve lasso di tempo (ad es. mediante interruttore porta), l'aria calda viene trattenuta meglio all'interno dell'ambiente. I ventilatori a soffitto devono sempre essere posizionati in modo tale che il lancio non sia diretto sulle postazioni di lavoro.

La distanza tra gli LD 15 non deve superare i 10 m e la distanze dalle pareti laterali non devono essere superiori a 5 m. Approssimativamente può essere previsto 1 LD 15 per una superficie di ca. 100 m^2 . A seconda dell'altezza del locale e delle condizioni locali, $2 \text{ LD}/100 \text{ m}^2$.

stratificazione naturale della temperatura

stratificazione di riferimento della temperatura

VENTILATORE A SOFFITTO LD 15 VENTILATORE A SOFFITTO / ACCESSORI

VENTILATORE A SOFFITTO LD 15

per esercizio con aria ricircolata e montaggio a soffitto con alette equilibrate staticamente e dinamicamente. Colore: bianco traffico RAL 9016

Attraverso l'impiego di ventilatori a soffitto, in esercizio invernale l'accumulo di calore nella zona del soffitto viene spinto nuovamente nella zona occupata. Grazie alla migliore distribuzione della temperatura, aumenta il comfort con un contemporaneo risparmio di energia. In estate, grazie a ricircolo dell'aria, viene creato un gradevole clima ambiente.

DATI TECNICI

TIPO		LD 15
Numero alette		3
Diametro	cm	Ø 142
Altezza d'installazione	cm	69
Ricircolo aria	m³/h	15.000
Velocità	giri/min.	300
Tensione di esercizio		230 V / 50 Hz
Potenza assorbita	W	75
Corrente assorbita max.	А	0,35
Livello di pressione sonora*	dB(A)	34
Peso totale	kg	10,5

^{*} Livello di pressione sonora a una distanza di 5 m, misurato in un locale a medio assorbimento, dimensioni del locale ca. 1500 m³

Regolazione destratificazione dell'aria calda

Con la regolazione della destratificazione dell'aria calda, un sensore di temperatura nella zona del pavimento e uno nella zona del soffitto rilevano la temperatura ambiente. L'attivazione del ventilatore a soffitto avviene in base all'impostazione della differenza di attivazione o disattivazione.

Temperatura ambiente ammissibile	da -10 a 50 °C
Tensione di esercizio	230 V / 50 Hz
Corrente di commutazione max. consentita	8 A (4 A potenza motore)
Contatto di commutazione	1 contatto di commutazione, contatto relè
Differenziale di accensione Δ	t on da 1 a 10 K (racc. 6 K)
Differenziale di spegnimento Δ	off da 1 a 10 K (racc. 4 K)

Avvertenza

Qualora vengano utilizzati sistemi di regolazione per la destratificazione dell'aria calda, i sensori non devono essere montati in prossimità di porte, finestre o tubazioni dell'acqua calda non isolate

Il posizionamento dei sensori e l'impostazione delle variazioni di temperatura Δt -on e Δt -off sul sistema di regolazione della temperatura differenziale sono basilari per garantire il benessere al'interno dell'ambiente. Eventualmente tali temperature vanno regolate fino a raggiungere una temperatura ottimale.

Regolatore di velocità continuo

Regolatore di velocità per il funzionamento continuo di max. cinque (3A) o tre (1,5A) ventilatori a soffitto.

Temperatura ambiente ammissibile	da -10 a 35 °C
Tensione di esercizio	230 V / 50 Hz
Corrente di commutazione max. consentita	1,5 A / 3 A

Sbarre di sospensione (su richiesta)

Per ottenere lanci sufficienti nei locali più alti (da ca. 7 m) e per un montaggio dei ventilatori a soffitto sfalsati in altezza sono disponibili su richiesta sbarre di sospensione di lunghezza diversa.

Lunghezza - Sbarra di sospensione	cm	20	90	150	200
Altezza d'ingombro - Ventilatore a soffitto	cm	44	114	174	224

AEROTERMO LH-EC / LH ESEMPI DI MONTAGGIO

DIRETTIVE GENERALI:

Gli aerotermi Wolf vanno disposti in modo che il flusso d'aria non investa direttamente persone o macchine.

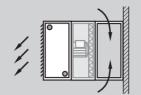
Per una ripartizione uniforme della temperatura nel locale è opportuno installare vari apparecchi più piccoli piuttosto che uno più grande. La disposizione deve essere tale da evitare che i lanci dei diversi aerotermi si incrocino, ma interessino adeguatamente il campo di lavoro previsto. Va sempre garantita una libera aspirazione dell'aria di ricircolo.

Il lancio degli aerotermi Wolf deve essere adattato alle dimensioni del locale. I valori riportati nelle tabelle dei dati tecnici sono valori indicativi e possono essere adeguati alle dimensioni del locale con accessori come il cono di espulsione, lo scarico largo e l'espulsione su quattro lati.

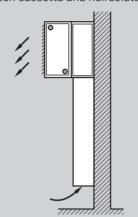
Il livello sonoro degli aerotermi Wolf è molto basso. I valori dB(A) riportati nelle tabelle dei dati tecnici sono valori medi, misurati in un locale a medio assorbimento a 5 m di distanza dall'apparecchio.

Con gli apparecchi a soffitto si possono verificare, a motore fermo, danni da surriscaldamento a causa dell'accumulo di calore. Occorre quindi limitare la temperatura di mandata a

115 °C in caso di montaggio di una cassetta filtro

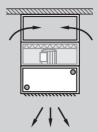

140 °C se non sono presenti accessori.

A ventilatore fermo, tutte le valvole di regolazione o intercettazione devono chiudersi automaticamente.

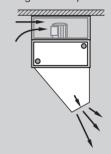

In caso di esercizio con aria esterna / aria miscelata, in Germania è necessario attenersi ai requisiti secondo VDI 6022.

LH-EC / LH MONTAGGIO A PARETE

con cassetta filtro e mensola

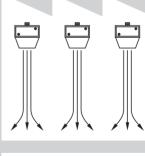


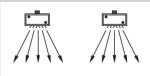
con cassetta aria ricircolata

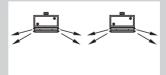


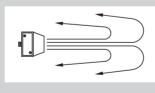
LH-EC / LH MONTAGGIO A SOFFITTO

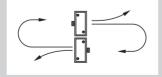
con mensola

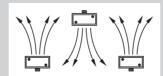


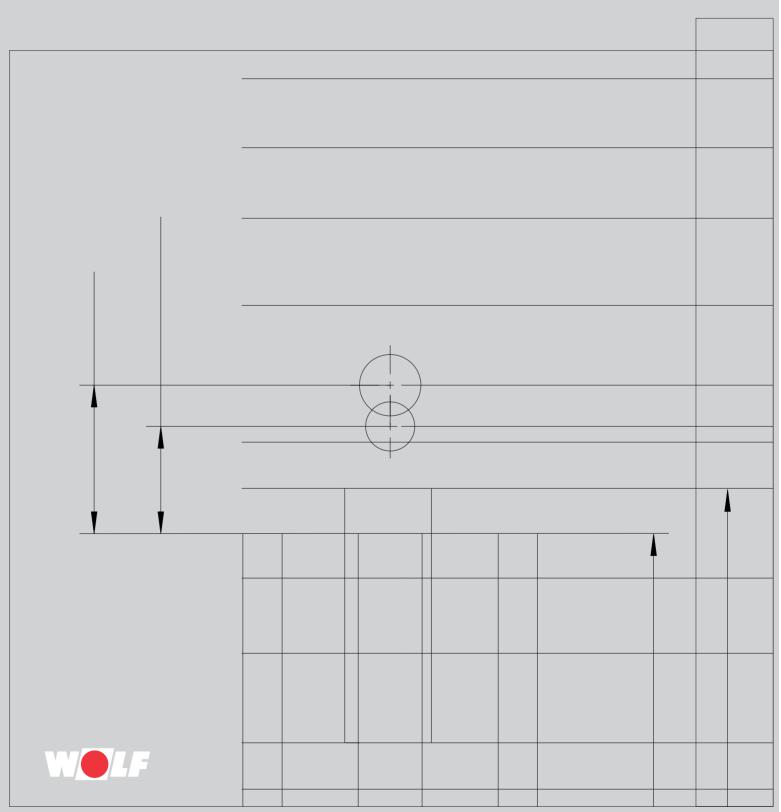

con ugello di espulsione




con cono di espulsione e mensola






AEROTERMO LH-EC / LH PESI

Peso in kg

Appare	ecchio base		LH-EC 25 LH 25	LH-EC 40 LH 40	LH-EC 60 LH 60	LH-EC 100 LH 100			
PWW	Aerotermo tipo 1	Cu/Al	24	32	48	76			
e PHW	Aerotermo tipo 2	Cu/Al	26	35	51	82			
	Aerotermo tipo 3	Cu/Al	27	36	52	84			
	Aerotermo tipo 4	Cu/Al	28	38	54	88			
	Aerotermo tipo 2	acciaio zincato	53	80	127	186			
	Aerotermo tipo 3	acciaio zincato	65	85	136	212			
	Aerotermo a vapore tipo D	Cu/Al		45	65	97			
	Aerotermo elettrico 6 kW		35		su richiesta	su richiesta			
	Aerotermo elettrico 9 kW		23	su richiesta					
	Aerotermo elettrico 12 kW		23						
Access	sori aspirazione								
	Cassetta aria miscelata		26	32	42	68			
	Cassetta aria ricircolata		16	28	31	50			
	Cassetta filtro	setta filtro		16	20	37			
Accessori di espulsione									
	Ugello di espulsione		5	7	10	14			
	Cono di espulsione		4	12	19	27			
	Scarico largo		4	7	11	16			
	Espulsione su quattro lati		5	7	13	16			
	Croce di espulsione		0,4	0,5	1,1	1,3			
	Serranda di induzione		3	4	7	9			
	Cono adattatore				18	26			
Altre n	nensole di fissaggio (1 se	rie)	3	3	9	9			

WOLF GMBH / POSTFACH 1380 / D-84048 MAINBURG / TEL. +49.0.875174-0 / FAX +49.0.875174-1600 / www.WOLF.eu

